These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 37630205)

  • 21. A Truxenone-based Covalent Organic Framework as an All-Solid-State Lithium-Ion Battery Cathode with High Capacity.
    Yang X; Hu Y; Dunlap N; Wang X; Huang S; Su Z; Sharma S; Jin Y; Huang F; Wang X; Lee SH; Zhang W
    Angew Chem Int Ed Engl; 2020 Nov; 59(46):20385-20389. PubMed ID: 32722860
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Search for New Anode Materials for High Performance Li-Ion Batteries.
    Roy K; Banerjee A; Ogale S
    ACS Appl Mater Interfaces; 2022 May; 14(18):20326-20348. PubMed ID: 35413183
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional Separator Enabled by Covalent Organic Frameworks for High-Performance Li Metal Batteries.
    Wang C; Li W; Jin Y; Liu J; Wang H; Zhang Q
    Small; 2023 Jul; 19(28):e2300023. PubMed ID: 37191227
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Covalent Organic Frameworks as Electrode Materials for Alkali Metal-ion Batteries.
    Cui S; Miao W; Peng H; Ma G; Lei Z; Zhu L; Xu Y
    Chemistry; 2024 Feb; 30(12):e202303320. PubMed ID: 38126628
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrochemically active, crystalline, mesoporous covalent organic frameworks on carbon nanotubes for synergistic lithium-ion battery energy storage.
    Xu F; Jin S; Zhong H; Wu D; Yang X; Chen X; Wei H; Fu R; Jiang D
    Sci Rep; 2015 Feb; 5():8225. PubMed ID: 25650133
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular Engineering of Covalent Organic Framework Cathodes for Enhanced Zinc-Ion Batteries.
    Wang W; Kale VS; Cao Z; Lei Y; Kandambeth S; Zou G; Zhu Y; Abouhamad E; Shekhah O; Cavallo L; Eddaoudi M; Alshareef HN
    Adv Mater; 2021 Oct; 33(39):e2103617. PubMed ID: 34365688
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Covalent Organic Frameworks as Electrode Materials for Metal Ion Batteries: A Current Review.
    Wang Z; Jin W; Huang X; Lu G; Li Y
    Chem Rec; 2020 Oct; 20(10):1198-1219. PubMed ID: 32881320
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Porous Organic Framework Materials (MOF, COF, and HOF) as the Multifunctional Separator for Rechargeable Lithium Metal Batteries.
    Yang Y; Sun Z; Wu Y; Liang Z; Li F; Zhu M; Liu J
    Small; 2024 May; ():e2401457. PubMed ID: 38733086
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Post-Lithium-Ion Battery Era: Recent Advances in Rechargeable Potassium-Ion Batteries.
    Wang B; Ang EH; Yang Y; Zhang Y; Ye M; Liu Q; Li CC
    Chemistry; 2021 Jan; 27(2):512-536. PubMed ID: 32510710
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-Lithium-Affinity Chemically Exfoliated 2D Covalent Organic Frameworks.
    Chen X; Li Y; Wang L; Xu Y; Nie A; Li Q; Wu F; Sun W; Zhang X; Vajtai R; Ajayan PM; Chen L; Wang Y
    Adv Mater; 2019 Jul; 31(29):e1901640. PubMed ID: 31155765
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Application of imine covalent organic frameworks in sample pretreatment].
    Yuan H; Lu Z; Li Y; Zhang C; Li G
    Se Pu; 2022 Feb; 40(2):109-122. PubMed ID: 35080157
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Progress of Hard Carbon as an Anode Material in Sodium-Ion Batteries.
    Tan S; Yang H; Zhang Z; Xu X; Xu Y; Zhou J; Zhou X; Pan Z; Rao X; Gu Y; Wang Z; Wu Y; Liu X; Zhang Y
    Molecules; 2023 Mar; 28(7):. PubMed ID: 37049897
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engineering Covalent Organic Frameworks Toward Advanced Zinc-Based Batteries.
    Zhang Q; Zhi P; Zhang J; Duan S; Yao X; Liu S; Sun Z; Jun SC; Zhao N; Dai L; Wang L; Wu X; He Z; Zhang Q
    Adv Mater; 2024 Jun; 36(24):e2313152. PubMed ID: 38491731
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Organic Electrode Materials for Dual-Ion Batteries.
    Tong Y; Wei Y; Song A; Ma Y; Yang J
    ChemSusChem; 2024 Apr; 17(7):e202301468. PubMed ID: 38116879
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In Situ Growth of Covalent Organic Framework Nanosheets on Graphene as the Cathode for Long-Life High-Capacity Lithium-Ion Batteries.
    Liu X; Jin Y; Wang H; Yang X; Zhang P; Wang K; Jiang J
    Adv Mater; 2022 Sep; 34(37):e2203605. PubMed ID: 35905464
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Superior "green" electrode materials for secondary batteries: through the footprint family indicators to analyze their environmental friendliness.
    Wu H; Gong Y; Yu Y; Huang K; Wang L
    Environ Sci Pollut Res Int; 2019 Dec; 26(36):36538-36557. PubMed ID: 31732947
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synergistic Effect of Covalent Bonding and Physical Encapsulation of Sulfur in the Pores of a Microporous COF to Improve Cycling Performance in Li-S Batteries.
    Royuela S; Almarza J; Mancheño MJ; Pérez-Flores JC; Michel EG; Ramos MM; Zamora F; Ocón P; Segura JL
    Chemistry; 2019 Sep; 25(53):12394-12404. PubMed ID: 31265184
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tuning the electronic energy level of covalent organic frameworks for crafting high-rate Na-ion battery anode.
    Haldar S; Kaleeswaran D; Rase D; Roy K; Ogale S; Vaidhyanathan R
    Nanoscale Horiz; 2020 Aug; 5(8):1264-1273. PubMed ID: 32647840
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coupled Solar Battery with 6.9 % Efficiency.
    Jiao L; Zhang X; Feng Y; Lin J; Yuan D; Wang Y
    Angew Chem Int Ed Engl; 2023 Jul; 62(30):e202306506. PubMed ID: 37254704
    [TBL] [Abstract][Full Text] [Related]  

  • 40. New Insights into the Anchoring Mechanism of Polysulfides inside Nanoporous Covalent Organic Frameworks for Lithium-Sulfur Batteries.
    Song X; Zhang M; Yao M; Hao C; Qiu J
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):43896-43903. PubMed ID: 30480990
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.