These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 37630205)

  • 41. Highly Fluoro-Substituted Covalent Organic Framework and Its Application in Lithium-Sulfur Batteries.
    Wang DG; Li N; Hu Y; Wan S; Song M; Yu G; Jin Y; Wei W; Han K; Kuang GC; Zhang W
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42233-42240. PubMed ID: 30431253
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Advanced Covalent Organic Frameworks for Multi-Valent Metal Ion Batteries.
    Luo XX; Wang XT; Ang EH; Zhang KY; Zhao XX; Lü HY; Wu XL
    Chemistry; 2023 Jan; 29(6):e202202723. PubMed ID: 36250748
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A Thiazole-linked Covalent Organic Framework for Lithium-Sulphur Batteries.
    Yan R; Mishra B; Traxler M; Roeser J; Chaoui N; Kumbhakar B; Schmidt J; Li S; Thomas A; Pachfule P
    Angew Chem Int Ed Engl; 2023 Aug; 62(32):e202302276. PubMed ID: 37193648
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Boosting the Capacity of Aqueous Li-Ion Capacitors via Pinpoint Surgery in Nanocoral-Like Covalent Organic Frameworks.
    Geng Q; Wang H; Wang J; Hong J; Sun W; Wu Y; Wang Y
    Small Methods; 2022 Aug; 6(8):e2200314. PubMed ID: 35691937
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A Novel Salen-based Porous Framework Polymer as Durable Anode for Lithium-Ion Storage.
    Zhang X; Wang J; Yu C; Li H; Meng F; Lu T; Pan L
    ChemSusChem; 2021 Oct; 14(20):4601-4608. PubMed ID: 34453412
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Few-Layered Boronic Ester Based Covalent Organic Frameworks/Carbon Nanotube Composites for High-Performance K-Organic Batteries.
    Chen X; Zhang H; Ci C; Sun W; Wang Y
    ACS Nano; 2019 Mar; 13(3):3600-3607. PubMed ID: 30807104
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Few layer covalent organic frameworks with graphene sheets as cathode materials for lithium-ion batteries.
    Wang Z; Li Y; Liu P; Qi Q; Zhang F; Lu G; Zhao X; Huang X
    Nanoscale; 2019 Mar; 11(12):5330-5335. PubMed ID: 30843565
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A Microporous Covalent-Organic Framework with Abundant Accessible Carbonyl Groups for Lithium-Ion Batteries.
    Luo Z; Liu L; Ning J; Lei K; Lu Y; Li F; Chen J
    Angew Chem Int Ed Engl; 2018 Jul; 57(30):9443-9446. PubMed ID: 29863784
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Progress in Hybridization of Covalent Organic Frameworks and Metal-Organic Frameworks.
    Deng Y; Wang Y; Xiao X; Saucedo BJ; Zhu Z; Xie M; Xu X; Yao K; Zhai Y; Zhang Z; Chen J
    Small; 2022 Sep; 18(38):e2202928. PubMed ID: 35986438
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ultrastable and High-Rate 2D Siloxene Anode Enabled by Covalent Organic Framework Engineering for Advanced Lithium-Ion Batteries.
    Zhang Y; Wu Y; An Y; Wei C; Tan L; Xi B; Xiong S; Feng J
    Small Methods; 2022 Jun; 6(6):e2200306. PubMed ID: 35478385
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Organic Carbonyl Compounds for Sodium-Ion Batteries: Recent Progress and Future Perspectives.
    Wang HG; Zhang XB
    Chemistry; 2018 Dec; 24(69):18235-18245. PubMed ID: 30007002
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Polyanion-Type Electrode Materials for Sodium-Ion Batteries.
    Ni Q; Bai Y; Wu F; Wu C
    Adv Sci (Weinh); 2017 Mar; 4(3):1600275. PubMed ID: 28331782
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Two Birds One Stone: Graphene Assisted Reaction Kinetics and Ionic Conductivity in Phthalocyanine-Based Covalent Organic Framework Anodes for Lithium-ion Batteries.
    Zhao J; Zhou M; Chen J; Wang L; Zhang Q; Zhong S; Xie H; Li Y
    Small; 2023 Nov; 19(44):e2303353. PubMed ID: 37391276
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Two-dimensional layered compound based anode materials for lithium-ion batteries and sodium-ion batteries.
    Xie X; Wang S; Kretschmer K; Wang G
    J Colloid Interface Sci; 2017 Aug; 499():17-32. PubMed ID: 28363101
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Azo-Branched Covalent Organic Framework Thin Films as Active Separators for Superior Sodium-Sulfur Batteries.
    Yin C; Li Z; Zhao D; Yang J; Zhang Y; Du Y; Wang Y
    ACS Nano; 2022 Sep; 16(9):14178-14187. PubMed ID: 35994525
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Two-Dimensional Imide-Based Covalent Organic Frameworks with Tailored Pore Functionality as Separators for High-Performance Li-S Batteries.
    Shi J; Su M; Li H; Lai D; Gao F; Lu Q
    ACS Appl Mater Interfaces; 2022 Sep; 14(37):42018-42029. PubMed ID: 36097371
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hard Carbons as Anodes in Sodium-Ion Batteries: Sodium Storage Mechanism and Optimization Strategies.
    Liu L; Tian Y; Abdussalam A; Gilani MRHS; Zhang W; Xu G
    Molecules; 2022 Oct; 27(19):. PubMed ID: 36235057
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Post-synthetic Covalent Organic Framework to Improve the Performance of Solid-State Li
    Zhang J; Luo D; Xiao H; Zhao H; Ding B; Dou H; Zhang X
    ACS Appl Mater Interfaces; 2023 Jul; 15(29):34704-34710. PubMed ID: 37462202
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Advanced Anode Materials for Rechargeable Sodium-Ion Batteries.
    Qiao S; Zhou Q; Ma M; Liu HK; Dou SX; Chong S
    ACS Nano; 2023 Jun; 17(12):11220-11252. PubMed ID: 37289640
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Recent Progress in Design Principles of Covalent Organic Frameworks for Rechargeable Metal-Ion Batteries.
    Zhang L; Zhang X; Han D; Zhai L; Mi L
    Small Methods; 2023 Nov; 7(11):e2300687. PubMed ID: 37568245
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.