These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 3763041)

  • 21. Activation of alpha-adrenoceptors indirectly facilitates sodium pumping in frog motoneurons.
    Shope SB; Hackman JC; Holohean AM; Davidoff RA
    Brain Res; 1993 Dec; 630(1-2):207-13. PubMed ID: 7509707
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Alpha and beta adrenergic control of muscle tonus].
    Cessi C
    Boll Soc Ital Biol Sper; 1973 Mar; 49(9):427-32. PubMed ID: 4150759
    [No Abstract]   [Full Text] [Related]  

  • 23. The effects of noradrenaline on neurones in the rat dorsal motor nucleus of the vagus, in vitro.
    Fukuda A; Minami T; Nabekura J; Oomura Y
    J Physiol; 1987 Dec; 393():213-31. PubMed ID: 2895810
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Whole cell recordings of lumbar motoneurons during locomotor-like activity in the in vitro neonatal rat spinal cord.
    Hochman S; Schmidt BJ
    J Neurophysiol; 1998 Feb; 79(2):743-52. PubMed ID: 9463437
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Inhibitory effects of taurine on spinal cord motoneurons of the lamprey].
    Batueva IV; Veselkin NP; Suderevskaia EI
    Neirofiziologiia; 1987; 19(4):551-4. PubMed ID: 3658043
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spinal administration of adrenergic agents produces analgesia in amphibians.
    Stevens CW; Brenner GM
    Eur J Pharmacol; 1996 Dec; 316(2-3):205-10. PubMed ID: 8982687
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An in vitro study of the effects of serotonin on frog primary afferent terminals.
    Holohean AM; Hackman JC; Davidoff RA
    Neurosci Lett; 1990 May; 113(2):175-80. PubMed ID: 2143002
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Voltage-clamp analysis of taurine-induced suppression of excitatory postsynaptic potentials in frog spinal motoneurons.
    Yasunami T; Kuno M; Matsuura S
    J Neurophysiol; 1988 Oct; 60(4):1405-18. PubMed ID: 3264017
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microiontophoresis of 5-hydroxytryptamine, epinephrine, and prostaglandin E1 on spinal neurons in the frog.
    Caulford PG; Coceani F
    Can J Physiol Pharmacol; 1977 Apr; 55(2):293-300. PubMed ID: 301425
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Noradrenaline regulation of pain-transmission in the spinal cord mediated by alpha-adrenoceptors.
    Kuraishi Y; Harada Y; Takagi H
    Brain Res; 1979 Oct; 174(2):333-6. PubMed ID: 226222
    [No Abstract]   [Full Text] [Related]  

  • 31. [Microiontophoretic study of the effect of acetylcholine and noradrenaline on the monosynaptic reflex activity of the spinal cord].
    Pushkarev IuP
    Fiziol Zh SSSR Im I M Sechenova; 1978 Nov; 64(11):1555-8. PubMed ID: 729840
    [TBL] [Abstract][Full Text] [Related]  

  • 32. NT-3 evokes an LTP-like facilitation of AMPA/kainate receptor-mediated synaptic transmission in the neonatal rat spinal cord.
    Arvanov VL; Seebach BS; Mendell LM
    J Neurophysiol; 2000 Aug; 84(2):752-8. PubMed ID: 10938302
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thyrotropin-releasing hormone mimics descending slow synaptic potentials in rat spinal motoneurons.
    Takahashi T
    Proc R Soc Lond B Biol Sci; 1985 Sep; 225(1240):391-8. PubMed ID: 2865733
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Depolarizing action of dopamine on the motor neurons of an isolated segment of the spinal cord in rat pups].
    Oksamitnyĭ VN; Tamarova ZA
    Neirofiziologiia; 1987; 19(6):735-41. PubMed ID: 3448490
    [TBL] [Abstract][Full Text] [Related]  

  • 35. NMDA antagonists and potentiation of NMDA-induced motoneuron depolarizations in the isolated frog spinal cord.
    Zhang DX; Hackman JC; Davidoff RA
    Brain Res; 1989 Jul; 493(1):129-35. PubMed ID: 2570616
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synaptic activation of bulbospongiosus motoneurons via dorsal gray commissural inputs.
    Best TK; Marson L; Thor KB; Burgard EC
    J Neurophysiol; 2013 Jan; 109(1):58-67. PubMed ID: 23076107
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evidence supporting the indirect depolarization of primary afferent terminals in the frog by excitatory amino acids.
    Evans RH
    J Physiol; 1980 Jan; 298():25-35. PubMed ID: 6965722
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Inhibitory actions of CO2 on spinal inter- and motoneurons in rats].
    Speckmann RJ; Caspers H
    Pflugers Arch; 1969; 307(2):R119-20. PubMed ID: 5814770
    [No Abstract]   [Full Text] [Related]  

  • 39. Endogenous monoamine receptor activation is essential for enabling persistent sodium currents and repetitive firing in rat spinal motoneurons.
    Harvey PJ; Li X; Li Y; Bennett DJ
    J Neurophysiol; 2006 Sep; 96(3):1171-86. PubMed ID: 16760346
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Control of spinal motor system by descending noradrenergic neuron].
    Fukuda H; Ono H
    Nihon Yakurigaku Zasshi; 1990 Jul; 96(1):1-9. PubMed ID: 1976578
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.