These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 37630526)
1. Accelerating Chloroplast Engineering: A New System for Rapid Generation of Marker-Free Transplastomic Lines of Taunt HN; Jackson HO; Gunnarsson ÍN; Pervaiz R; Purton S Microorganisms; 2023 Jul; 11(8):. PubMed ID: 37630526 [TBL] [Abstract][Full Text] [Related]
2. A Simple Technology for Generating Marker-Free Chloroplast Transformants of the Green Alga Chlamydomonas reinhardtii. Larrea-Alvarez M; Young R; Purton S Methods Mol Biol; 2021; 2317():293-304. PubMed ID: 34028777 [TBL] [Abstract][Full Text] [Related]
3. New tools for chloroplast genetic engineering allow the synthesis of human growth hormone in the green alga Chlamydomonas reinhardtii. Wannathong T; Waterhouse JC; Young RE; Economou CK; Purton S Appl Microbiol Biotechnol; 2016 Jun; 100(12):5467-77. PubMed ID: 26887319 [TBL] [Abstract][Full Text] [Related]
4. CpPosNeg: A positive-negative selection strategy allowing multiple cycles of marker-free engineering of the Chlamydomonas plastome. Jackson HO; Taunt HN; Mordaka PM; Kumari S; Smith AG; Purton S Biotechnol J; 2022 Oct; 17(10):e2200088. PubMed ID: 35509114 [TBL] [Abstract][Full Text] [Related]
5. Marker-free genetic engineering of the chloroplast in the green microalga Chlamydomonas reinhardtii. Chen HC; Melis A Plant Biotechnol J; 2013 Sep; 11(7):818-28. PubMed ID: 23647698 [TBL] [Abstract][Full Text] [Related]
6. A rapid, modular and marker-free chloroplast expression system for the green alga Chlamydomonas reinhardtii. Bertalan I; Munder MC; Weiß C; Kopf J; Fischer D; Johanningmeier U J Biotechnol; 2015 Feb; 195():60-6. PubMed ID: 25554634 [TBL] [Abstract][Full Text] [Related]
7. Directed chloroplast transformation in Chlamydomonas reinhardtii: insertional inactivation of the psaC gene encoding the iron sulfur protein destabilizes photosystem I. Takahashi Y; Goldschmidt-Clermont M; Soen SY; Franzén LG; Rochaix JD EMBO J; 1991 Aug; 10(8):2033-40. PubMed ID: 1712288 [TBL] [Abstract][Full Text] [Related]
8. Use of the ptxD gene as a portable selectable marker for chloroplast transformation in Chlamydomonas reinhardtii. Sandoval-Vargas JM; Jiménez-Clemente LA; Macedo-Osorio KS; Oliver-Salvador MC; Fernández-Linares LC; Durán-Figueroa NV; Badillo-Corona JA Mol Biotechnol; 2019 Jun; 61(6):461-468. PubMed ID: 30997667 [TBL] [Abstract][Full Text] [Related]
9. Further characterization of the respiratory deficient dum-1 mutation of Chlamydomonas reinhardtii and its use as a recipient for mitochondrial transformation. Randolph-Anderson BL; Boynton JE; Gillham NW; Harris EH; Johnson AM; Dorthu MP; Matagne RF Mol Gen Genet; 1993 Jan; 236(2-3):235-44. PubMed ID: 8437570 [TBL] [Abstract][Full Text] [Related]
10. The chloroplast ycf3 and ycf4 open reading frames of Chlamydomonas reinhardtii are required for the accumulation of the photosystem I complex. Boudreau E; Takahashi Y; Lemieux C; Turmel M; Rochaix JD EMBO J; 1997 Oct; 16(20):6095-104. PubMed ID: 9321389 [TBL] [Abstract][Full Text] [Related]
11. A simple method for chloroplast transformation in Chlamydomonas reinhardtii. Ramesh VM; Bingham SE; Webber AN Methods Mol Biol; 2004; 274():301-7. PubMed ID: 15187288 [TBL] [Abstract][Full Text] [Related]
12. Intercistronic expression elements (IEE) from the chloroplast of Chlamydomonas reinhardtii can be used for the expression of foreign genes in synthetic operons. Macedo-Osorio KS; Pérez-España VH; Garibay-Orijel C; Guzmán-Zapata D; Durán-Figueroa NV; Badillo-Corona JA Plant Mol Biol; 2018 Nov; 98(4-5):303-317. PubMed ID: 30225747 [TBL] [Abstract][Full Text] [Related]
13. A Phosphite Dehydrogenase Variant with Promiscuous Access to Nicotinamide Cofactor Pools Sustains Fast Phosphite-Dependent Growth of Transplastomic Cutolo E; Tosoni M; Barera S; Herrera-Estrella L; Dall'Osto L; Bassi R Plants (Basel); 2020 Apr; 9(4):. PubMed ID: 32276527 [TBL] [Abstract][Full Text] [Related]
14. Stable nuclear transformation of Chlamydomonas reinhardtii by using a C. reinhardtii gene as the selectable marker. Mayfield SP; Kindle KL Proc Natl Acad Sci U S A; 1990 Mar; 87(6):2087-91. PubMed ID: 2179948 [TBL] [Abstract][Full Text] [Related]
15. Selectable Markers and Reporter Genes for Engineering the Chloroplast of Esland L; Larrea-Alvarez M; Purton S Biology (Basel); 2018 Oct; 7(4):. PubMed ID: 30309004 [No Abstract] [Full Text] [Related]
16. Targeted disruption of chloroplast genes in Chlamydomonas reinhardtii. Newman SM; Gillham NW; Harris EH; Johnson AM; Boynton JE Mol Gen Genet; 1991 Nov; 230(1-2):65-74. PubMed ID: 1745243 [TBL] [Abstract][Full Text] [Related]
17. Codon reassignment to facilitate genetic engineering and biocontainment in the chloroplast of Chlamydomonas reinhardtii. Young RE; Purton S Plant Biotechnol J; 2016 May; 14(5):1251-60. PubMed ID: 26471875 [TBL] [Abstract][Full Text] [Related]
18. A simple, low-cost method for chloroplast transformation of the green alga Chlamydomonas reinhardtii. Economou C; Wannathong T; Szaub J; Purton S Methods Mol Biol; 2014; 1132():401-11. PubMed ID: 24599870 [TBL] [Abstract][Full Text] [Related]
19. Insertion of the N-terminal part of PsaF from Chlamydomonas reinhardtii into photosystem I from Synechococcus elongatus enables efficient binding of algal plastocyanin and cytochrome c6. Hippler M; Drepper F; Rochaix JD; Mühlenhoff U J Biol Chem; 1999 Feb; 274(7):4180-8. PubMed ID: 9933614 [TBL] [Abstract][Full Text] [Related]
20. Isolation and characterization of mutants corresponding to the MENA, MENB, MENC and MENE enzymatic steps of 5'-monohydroxyphylloquinone biosynthesis in Chlamydomonas reinhardtii. Emonds-Alt B; Coosemans N; Gerards T; Remacle C; Cardol P Plant J; 2017 Jan; 89(1):141-154. PubMed ID: 27612091 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]