BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 37630531)

  • 1. Pleiotropic Regulator GssR Positively Regulates Autotrophic Growth of Gas-Fermenting
    Zhang H; Zhang C; Nie X; Wu Y; Yang C; Jiang W; Gu Y
    Microorganisms; 2023 Jul; 11(8):. PubMed ID: 37630531
    [No Abstract]   [Full Text] [Related]  

  • 2. Interactive Regulation of Formate Dehydrogenase during CO
    Zhang L; Liu Y; Zhao R; Zhang C; Jiang W; Gu Y
    mBio; 2020 Aug; 11(4):. PubMed ID: 32817100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein acetylation-mediated cross regulation of acetic acid and ethanol synthesis in the gas-fermenting Clostridium ljungdahlii.
    Liu Y; Zhang Z; Jiang W; Gu Y
    J Biol Chem; 2022 Feb; 298(2):101538. PubMed ID: 34954142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pooled CRISPR Interference Screening Identifies Crucial Transcription Factors in Gas-Fermenting
    Zhang H; Feng H; Xing XH; Jiang W; Zhang C; Gu Y
    ACS Synth Biol; 2024 Jun; 13(6):1893-1905. PubMed ID: 38825826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering Clostridium ljungdahlii as the gas-fermenting cell factory for the production of biofuels and biochemicals.
    Zhang L; Zhao R; Jia D; Jiang W; Gu Y
    Curr Opin Chem Biol; 2020 Dec; 59():54-61. PubMed ID: 32480247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional dissection and modulation of the BirA protein for improved autotrophic growth of gas-fermenting Clostridium ljungdahlii.
    Zhang C; Nie X; Zhang H; Wu Y; He H; Yang C; Jiang W; Gu Y
    Microb Biotechnol; 2021 Sep; 14(5):2072-2089. PubMed ID: 34291572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR-Cas12a-Mediated Gene Deletion and Regulation in
    Zhao R; Liu Y; Zhang H; Chai C; Wang J; Jiang W; Gu Y
    ACS Synth Biol; 2019 Oct; 8(10):2270-2279. PubMed ID: 31526005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic Engineering of Gas-Fermenting
    Jia D; He M; Tian Y; Shen S; Zhu X; Wang Y; Zhuang Y; Jiang W; Gu Y
    ACS Synth Biol; 2021 Oct; 10(10):2628-2638. PubMed ID: 34549587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of Clostridium ljungdahlii OTA1: a non-autotrophic hyper ethanol-producing strain.
    Whitham JM; Schulte MJ; Bobay BG; Bruno-Barcena JM; Chinn MS; Flickinger MC; Pawlak JJ; Grunden AM
    Appl Microbiol Biotechnol; 2017 Feb; 101(4):1615-1630. PubMed ID: 27866253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ethanol Metabolism Dynamics in Clostridium ljungdahlii Grown on Carbon Monoxide.
    Liu ZY; Jia DC; Zhang KD; Zhu HF; Zhang Q; Jiang WH; Gu Y; Li FL
    Appl Environ Microbiol; 2020 Jul; 86(14):. PubMed ID: 32414802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy Conservation and Carbon Flux Distribution During Fermentation of CO or H
    Zhu HF; Liu ZY; Zhou X; Yi JH; Lun ZM; Wang SN; Tang WZ; Li FL
    Front Microbiol; 2020; 11():416. PubMed ID: 32256473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In silico metabolic engineering of Clostridium ljungdahlii for synthesis gas fermentation.
    Chen J; Henson MA
    Metab Eng; 2016 Nov; 38():389-400. PubMed ID: 27720802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phage serine integrase-mediated genome engineering for efficient expression of chemical biosynthetic pathway in gas-fermenting Clostridium ljungdahlii.
    Huang H; Chai C; Yang S; Jiang W; Gu Y
    Metab Eng; 2019 Mar; 52():293-302. PubMed ID: 30633974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamic and Kinetic Modeling Directs Pathway Optimization for Isopropanol Production in a Gas-Fermenting Bacterium.
    Lo J; Wu C; Humphreys JR; Yang B; Jiang Z; Wang X; Maness P; Tsesmetzis N; Xiong W
    mSystems; 2023 Apr; 8(2):e0127422. PubMed ID: 36971551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of Heterologous Mevalonic Acid Pathway Enzymes in Clostridium ljungdahlii for the Conversion of Fructose and of Syngas to Mevalonate and Isoprene.
    Diner BA; Fan J; Scotcher MC; Wells DH; Whited GM
    Appl Environ Microbiol; 2018 Jan; 84(1):. PubMed ID: 29054870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii.
    Ueki T; Nevin KP; Woodard TL; Lovley DR
    mBio; 2014 Oct; 5(5):e01636-14. PubMed ID: 25336453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterizing acetogenic metabolism using a genome-scale metabolic reconstruction of Clostridium ljungdahlii.
    Nagarajan H; Sahin M; Nogales J; Latif H; Lovley DR; Ebrahim A; Zengler K
    Microb Cell Fact; 2013 Nov; 12():118. PubMed ID: 24274140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Rnf complex of Clostridium ljungdahlii is a proton-translocating ferredoxin:NAD+ oxidoreductase essential for autotrophic growth.
    Tremblay PL; Zhang T; Dar SA; Leang C; Lovley DR
    mBio; 2012 Dec; 4(1):e00406-12. PubMed ID: 23269825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A genetic system for Clostridium ljungdahlii: a chassis for autotrophic production of biocommodities and a model homoacetogen.
    Leang C; Ueki T; Nevin KP; Lovley DR
    Appl Environ Microbiol; 2013 Feb; 79(4):1102-9. PubMed ID: 23204413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Industrial Acetogenic Biocatalysts: A Comparative Metabolic and Genomic Analysis.
    Bengelsdorf FR; Poehlein A; Linder S; Erz C; Hummel T; Hoffmeister S; Daniel R; DĂĽrre P
    Front Microbiol; 2016; 7():1036. PubMed ID: 27458439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.