These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 37630531)

  • 21. Isobutanol Production by Autotrophic Acetogenic Bacteria.
    Weitz S; Hermann M; Linder S; Bengelsdorf FR; Takors R; Dürre P
    Front Bioeng Biotechnol; 2021; 9():657253. PubMed ID: 33912549
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identifying and Engineering Bottlenecks of Autotrophic Isobutanol Formation in Recombinant
    Hermann M; Teleki A; Weitz S; Niess A; Freund A; Bengelsdorf FR; Dürre P; Takors R
    Front Bioeng Biotechnol; 2021; 9():647853. PubMed ID: 33748092
    [No Abstract]   [Full Text] [Related]  

  • 23. Lactose-inducible system for metabolic engineering of Clostridium ljungdahlii.
    Banerjee A; Leang C; Ueki T; Nevin KP; Lovley DR
    Appl Environ Microbiol; 2014 Apr; 80(8):2410-6. PubMed ID: 24509933
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deletion of genes linked to the C
    Nwaokorie UJ; Reinmets K; de Lima LA; Pawar PR; Shaikh KM; Harris A; Köpke M; Valgepea K
    Front Bioeng Biotechnol; 2023; 11():1167892. PubMed ID: 37265994
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Insights into CO2 Fixation Pathway of Clostridium autoethanogenum by Targeted Mutagenesis.
    Liew F; Henstra AM; Winzer K; Köpke M; Simpson SD; Minton NP
    mBio; 2016 May; 7(3):. PubMed ID: 27222467
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Physiological response of Clostridium ljungdahlii DSM 13528 of ethanol production under different fermentation conditions.
    Xie BT; Liu ZY; Tian L; Li FL; Chen XH
    Bioresour Technol; 2015 Feb; 177():302-7. PubMed ID: 25496952
    [TBL] [Abstract][Full Text] [Related]  

  • 27.
    Dahle ML; Papoutsakis ET; Antoniewicz MR
    Metab Eng; 2022 Jul; 72():161-170. PubMed ID: 35307558
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of a metabolic pathway transfer and genomic integration system for the syngas-fermenting bacterium
    Philipps G; de Vries S; Jennewein S
    Biotechnol Biofuels; 2019; 12():112. PubMed ID: 31086564
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Metabolism of
    Lo J; Humphreys JR; Jack J; Urban C; Magnusson L; Xiong W; Gu Y; Ren ZJ; Maness PC
    Front Bioeng Biotechnol; 2020; 8():560726. PubMed ID: 33195125
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rediverting carbon flux in Clostridium ljungdahlii using CRISPR interference (CRISPRi).
    Woolston BM; Emerson DF; Currie DH; Stephanopoulos G
    Metab Eng; 2018 Jul; 48():243-253. PubMed ID: 29906505
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Domestication of the novel alcohologenic acetogen
    Lee J; Lee JW; Chae CG; Kwon SJ; Kim YJ; Lee JH; Lee HS
    Biotechnol Biofuels; 2019; 12():228. PubMed ID: 31572495
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Absolute Proteome Quantification in the Gas-Fermenting Acetogen
    Valgepea K; Talbo G; Takemori N; Takemori A; Ludwig C; Mahamkali V; Mueller AP; Tappel R; Köpke M; Simpson SD; Nielsen LK; Marcellin E
    mSystems; 2022 Apr; 7(2):e0002622. PubMed ID: 35384696
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metabolic response of Clostridium ljungdahlii to oxygen exposure.
    Whitham JM; Tirado-Acevedo O; Chinn MS; Pawlak JJ; Grunden AM
    Appl Environ Microbiol; 2015 Dec; 81(24):8379-91. PubMed ID: 26431975
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhancing hydrogen-dependent growth of and carbon dioxide fixation by Clostridium ljungdahlii through nitrate supplementation.
    Emerson DF; Woolston BM; Liu N; Donnelly M; Currie DH; Stephanopoulos G
    Biotechnol Bioeng; 2019 Feb; 116(2):294-306. PubMed ID: 30267586
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nitrate Feed Improves Growth and Ethanol Production of
    Klask CM; Kliem-Kuster N; Molitor B; Angenent LT
    Front Microbiol; 2020; 11():724. PubMed ID: 32435236
    [TBL] [Abstract][Full Text] [Related]  

  • 36. RNA-seq-based comparative transcriptome analysis of the syngas-utilizing bacterium Clostridium ljungdahlii DSM 13528 grown autotrophically and heterotrophically.
    Tan Y; Liu J; Chen X; Zheng H; Li F
    Mol Biosyst; 2013 Nov; 9(11):2775-84. PubMed ID: 24056499
    [TBL] [Abstract][Full Text] [Related]  

  • 37. L-Cys-Assisted Conversion of H
    Yang Y; Cao W; Shen F; Liu Z; Qin L; Liang X; Wan Y
    Appl Biochem Biotechnol; 2023 Feb; 195(2):844-860. PubMed ID: 36214953
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology group I.
    Tanner RS; Miller LM; Yang D
    Int J Syst Bacteriol; 1993 Apr; 43(2):232-6. PubMed ID: 7684239
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamic metabolic modelling predicts efficient acetogen-gut bacterium cocultures for CO-to-butyrate conversion.
    Li X; Henson MA
    J Appl Microbiol; 2021 Dec; 131(6):2899-2917. PubMed ID: 34008274
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Acetate augmentation boosts the ethanol production rate and specificity by Clostridium ljungdahlii during gas fermentation with pure carbon monoxide.
    Schulz S; Molitor B; Angenent LT
    Bioresour Technol; 2023 Feb; 369():128387. PubMed ID: 36435417
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.