These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 37630618)

  • 21. Aerobic and oxygen-limited naphthalene-amended enrichments induced the dominance of Pseudomonas spp. from a groundwater bacterial biofilm.
    Benedek T; Szentgyörgyi F; Szabó I; Farkas M; Duran R; Kriszt B; Táncsics A
    Appl Microbiol Biotechnol; 2020 Jul; 104(13):6023-6043. PubMed ID: 32415320
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization and Genomic Analysis of the Naphthalene-Degrading
    Sazonova OI; Ivanova AA; Delegan YA; Streletskii RA; Vershinina DD; Sokolov SL; Vetrova AA
    Microorganisms; 2023 Apr; 11(4):. PubMed ID: 37110515
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Complete genome sequence of the naphthalene-degrading Pseudomonas putida strain ND6.
    Li S; Zhao H; Li Y; Niu S; Cai B
    J Bacteriol; 2012 Sep; 194(18):5154-5. PubMed ID: 22933774
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Whole-cell bio-oxidation of n-dodecane using the alkane hydroxylase system of P. putida GPo1 expressed in E. coli.
    Grant C; Woodley JM; Baganz F
    Enzyme Microb Technol; 2011 May; 48(6-7):480-6. PubMed ID: 22113020
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative study of five polycyclic aromatic hydrocarbon degrading bacterial strains isolated from contaminated soils.
    Dagher F; Déziel E; Lirette P; Paquette G; Bisaillon JG; Villemur R
    Can J Microbiol; 1997 Apr; 43(4):368-77. PubMed ID: 9115093
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Complete genome sequence and comparative genome analysis of Alcanivorax sp. IO_7, a marine alkane-degrading bacterium isolated from hydrothermally-influenced deep seawater of southwest Indian ridge.
    Sinha RK; Krishnan KP; Kurian PJ
    Genomics; 2021 Jan; 113(1 Pt 2):884-891. PubMed ID: 33096255
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pseudomonas putida strain PCL1444, selected for efficient root colonization and naphthalene degradation, effectively utilizes root exudate components.
    Kuiper I; Kravchenko LV; Bloemberg GV; Lugtenberg BJ
    Mol Plant Microbe Interact; 2002 Jul; 15(7):734-41. PubMed ID: 12118890
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Two novel alkane hydroxylase-rubredoxin fusion genes isolated from a Dietzia bacterium and the functions of fused rubredoxin domains in long-chain n-alkane degradation.
    Nie Y; Liang J; Fang H; Tang YQ; Wu XL
    Appl Environ Microbiol; 2011 Oct; 77(20):7279-88. PubMed ID: 21873474
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Distribution of alkB genes within n-alkane-degrading bacteria.
    Vomberg A; Klinner U
    J Appl Microbiol; 2000 Aug; 89(2):339-48. PubMed ID: 10971768
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Degradation of substituted naphthalenesulfonic acids by Sphingomonas xenophaga BN6.
    Stolz A
    J Ind Microbiol Biotechnol; 1999 Oct; 23(4-5):391-399. PubMed ID: 11423960
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Naphthalene degradation studies using
    Tirkey SR; Ram S; Mishra S
    Heliyon; 2021 Mar; 7(3):e06334. PubMed ID: 33869819
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Elucidation of multiple alkane hydroxylase systems in biodegradation of crude oil n-alkane pollution by Pseudomonas aeruginosa DN1.
    Li YP; Pan JC; Ma YL
    J Appl Microbiol; 2020 Jan; 128(1):151-160. PubMed ID: 31566849
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metabolic Exchange with Non-Alkane-Consuming Pseudomonas stutzeri SLG510A3-8 Improves
    Hu B; Wang M; Geng S; Wen L; Wu M; Nie Y; Tang YQ; Wu XL
    Appl Environ Microbiol; 2020 Apr; 86(8):. PubMed ID: 32033953
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Isolation of
    Banerjee S; Bedics A; Tóth E; Kriszt B; Soares AR; Bóka K; Táncsics A
    Front Microbiol; 2022; 13():929128. PubMed ID: 36204622
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Draft genome sequence data of a 4-nitrophenol- degrading bacterium,
    Arora PK; Saroj RS; Mishra R; Omar RA; Kumari P; Srivastava A; Garg SK; Singh VP
    Data Brief; 2021 Oct; 38():107390. PubMed ID: 34589566
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Whole genome characterization and phenanthrene catabolic pathway of a biofilm forming marine bacterium Pseudomonas aeruginosa PFL-P1.
    Mahto KU; Das S
    Ecotoxicol Environ Saf; 2020 Dec; 206():111087. PubMed ID: 32871516
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biodegradation of petroleum hydrocarbons by psychrotrophic Pseudomonas strains possessing both alkane (alk) and naphthalene (nah) catabolic pathways.
    Whyte LG; Bourbonniére L; Greer CW
    Appl Environ Microbiol; 1997 Sep; 63(9):3719-23. PubMed ID: 9293024
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Expression of dibenzothiophene-degradative genes in two Pseudomonas species.
    Foght JM; Westlake DW
    Can J Microbiol; 1990 Oct; 36(10):718-24. PubMed ID: 2253112
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced biofilm formation and 3-chlorobenzoate degrading activity by the bacterial consortium of Burkholderia sp. NK8 and Pseudomonas aeruginosa PAO1.
    Yoshida S; Ogawa N; Fujii T; Tsushima S
    J Appl Microbiol; 2009 Mar; 106(3):790-800. PubMed ID: 19191976
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of novel genes involved in long-chain n-alkane degradation by Acinetobacter sp. strain DSM 17874.
    Throne-Holst M; Wentzel A; Ellingsen TE; Kotlar HK; Zotchev SB
    Appl Environ Microbiol; 2007 May; 73(10):3327-32. PubMed ID: 17400787
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.