BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 37630897)

  • 1. Microemulsions of Nonionic Surfactant with Water and Various Homologous Esters: Preparation, Phase Transitions, Physical Property Measurements, and Application for Extraction of Tricyclic Antidepressant Drugs from Aqueous Media.
    Racovita RC; Ciuca MD; Catana D; Comanescu C; Ciocirlan O
    Nanomaterials (Basel); 2023 Aug; 13(16):. PubMed ID: 37630897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surfactant structure effects in protein separations using nonionic microemulsions.
    Vasudevan M; Tahan K; Wiencek JM
    Biotechnol Bioeng; 1995 Apr; 46(2):99-108. PubMed ID: 18623269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of microemulsions using polyglycerol fatty acid esters as surfactant for the delivery of protein drugs.
    Ho HO; Hsiao CC; Sheu MT
    J Pharm Sci; 1996 Feb; 85(2):138-43. PubMed ID: 8683437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of surfactant/cosurfactant synergism impact on ibuprofen solubilization capacity and drug release characteristics of nonionic microemulsions.
    Djekic L; Primorac M; Filipic S; Agbaba D
    Int J Pharm; 2012 Aug; 433(1-2):25-33. PubMed ID: 22579578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing the microstructure of nonionic microemulsions with ethyl oleate by viscosity, ROESY, DLS, SANS, and cyclic voltammetry.
    Kaur G; Chiappisi L; Prévost S; Schweins R; Gradzielski M; Mehta SK
    Langmuir; 2012 Jul; 28(29):10640-52. PubMed ID: 22720716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved solubilization of Celecoxib in U-type nonionic microemulsions and their structural transitions with progressive aqueous dilution.
    Garti N; Avrahami M; Aserin A
    J Colloid Interface Sci; 2006 Jul; 299(1):352-65. PubMed ID: 16529763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of microemulsions for using as cosmeceutical delivery systems: effects of various components and characteristics of some formulations.
    Wuttikul K; Boonme P
    Drug Deliv Transl Res; 2016 Jun; 6(3):254-62. PubMed ID: 26813671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light scattering investigations on dilute nonionic oil-in-water microemulsions.
    Warisnoicharoen W; Lansley AB; Lawrence MJ
    AAPS PharmSci; 2000; 2(2):E12. PubMed ID: 11741228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of single-phase microemulsions in toluene/water/nonionic surfactant systems.
    Gotch AJ; Loar GW; Reeder AJ; Glista EE
    Langmuir; 2008 May; 24(9):4485-93. PubMed ID: 18351790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Description of Micellar Radii for Phase Behavior and Viscosity Modeling of Aqueous Surfactant Solutions and Microemulsions.
    Torrealba VA; Hoteit H; Johns RT
    Langmuir; 2018 Dec; 34(50):15327-15334. PubMed ID: 30480450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocompatible microemulsions based on limonene: formulation, structure, and applications.
    Papadimitriou V; Pispas S; Syriou S; Pournara A; Zoumpanioti M; Sotiroudis TG; Xenakis A
    Langmuir; 2008 Apr; 24(7):3380-6. PubMed ID: 18303927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonionic Microemulsions as Solubilizers of Hydrophobic Drugs: Solubilization of Paclitaxel.
    Lo JT; Lee TM; Chen BH
    Materials (Basel); 2016 Sep; 9(9):. PubMed ID: 28773882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Capillary flooding of wood with microemulsions from Winsor I systems.
    Carrillo CA; Saloni D; Lucia LA; Hubbe MA; Rojas OJ
    J Colloid Interface Sci; 2012 Sep; 381(1):171-9. PubMed ID: 22721790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of Microemulsion from an Alkyl Polyglycoside Surfactant and Tea Tree Oil.
    Vo TV; Chou YY; Chen BH
    Molecules; 2021 Mar; 26(7):. PubMed ID: 33807380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonionic oil-in-water microemulsions: the effect of oil type on phase behaviour.
    Warisnoicharoen W; Lansley AB; Lawrence MJ
    Int J Pharm; 2000 Mar; 198(1):7-27. PubMed ID: 10722947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of structure of oil phase, surfactant and co-surfactant on the physicochemical and electrochemical properties of bicontinuous microemulsion.
    Sripriya R; Muthu Raja K; Santhosh G; Chandrasekaran M; Noel M
    J Colloid Interface Sci; 2007 Oct; 314(2):712-7. PubMed ID: 17585927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microemulsions of triglyceride-based oils: The effect of co-oil and salinity on phase diagrams.
    Komesvarakul N; Sanders MD; Szekeres E; Acosta EJ; Faller JF; Mentlik T; Fisher LB; Nicoll G; Sabatini DA; Scamehorn JF
    J Cosmet Sci; 2006; 57(4):309-25. PubMed ID: 16957810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of cosurfactants and oils on the formation of pharmaceutical microemulsions based on PEG-8 caprylic/capric glycerides.
    Djekic L; Primorac M
    Int J Pharm; 2008 Mar; 352(1-2):231-9. PubMed ID: 18068919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tuning high aqueous phase uptake in nonionic water-in-oil microemulsions for the synthesis of Mn-Zn ferrite nanoparticles: phase behavior, characterization, and nanoparticle synthesis.
    Aubery C; Solans C; Sanchez-Dominguez M
    Langmuir; 2011 Dec; 27(23):14005-13. PubMed ID: 22039992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laccase Activity in CTAB-Based Water-in-Oil Microemulsions.
    Azimi M; Nafissi-Varcheh N; Faramarzi MA; Aboofazeli R
    Iran J Pharm Res; 2016; 15(3):441-452. PubMed ID: 27980579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.