These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 37630905)

  • 21. Facile Production of 2,5-Furandicarboxylic Acid via Oxidation of Industrially Sourced Crude 5-Hydroxymethylfurfural.
    Zuo X; Venkitasubramanian P; Martin KJ; Subramaniam B
    ChemSusChem; 2022 Jul; 15(13):e202102050. PubMed ID: 34913609
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Alloy-Driven Efficient Electrocatalytic Oxidation of Biomass-Derived 5-Hydroxymethylfurfural towards 2,5-Furandicarboxylic Acid: A Review.
    Guo M; Lu X; Xiong J; Zhang R; Li X; Qiao Y; Ji N; Yu Z
    ChemSusChem; 2022 Sep; 15(17):e202201074. PubMed ID: 35790081
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Facile Synthesis Route to AuPd Alloys for the Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid.
    Peng Y; Qiu B; Ding S; Hu M; Zhang Y; Jiao Y; Fan X; Parlett CMA
    Chempluschem; 2024 Jan; 89(1):e202300545. PubMed ID: 37884457
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cross-linked α-Ni(OH)
    Liu X; Wang R; Wei M; Wang X; Qiu J; Zhang J; Li S; Chen Y
    J Colloid Interface Sci; 2024 Mar; 657():438-448. PubMed ID: 38061227
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electronic Modulation Induced by Ni-VN Heterojunction Reinforces Electrolytic Hydrogen Evolution Coupled with Biomass Upgrade.
    Jia W; Liu B; Gong R; Bian X; Du S; Ma S; Song Z; Ren Z; Chen Z
    Small; 2023 Sep; 19(39):e2302025. PubMed ID: 37231554
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrochemical biomass valorization on gold-metal oxide nanoscale heterojunctions enables investigation of both catalyst and reaction dynamics with
    Heidary N; Kornienko N
    Chem Sci; 2020 Feb; 11(7):1798-1806. PubMed ID: 32180924
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulating the Electronic Structure of Ni Sites in Ni(OH)
    Ren G; Liu B; Liu L; Hu M; Zhu J; Xu X; Jing P; Wu J; Zhang J
    Inorg Chem; 2023 Aug; 62(31):12534-12547. PubMed ID: 37490478
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molten Salt-Assisted Synthesis of Co/N-Doped Carbon Hybrids for Aqueous-Phase Aerobic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid.
    Kumar R; Zhu Z; Chen C; Cai W; Woon-Chung Wong J; Zhao J
    ChemSusChem; 2022 Nov; 15(22):e202201333. PubMed ID: 36120725
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrocatalytic Poly(3,4-ethylenedioxythiophene) for Electrochemical Conversion of 5-Hydroxymethylfurfural.
    Carli S; Marchini E; Catani M; Orlandi M; Bazzanella N; Barboni D; Boaretto R; Cavazzini A; Caramori S
    Langmuir; 2024 May; 40(19):10115-10128. PubMed ID: 38703121
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Amorphous Ni-Mo-B-O Bifunctional Electrocatalyst for Simultaneous Production of Hydrogen and Value-added Chemicals.
    Hao X; Cai T; Ma J; She G; Zhang H; Wang W; Yu J; Mu L; Shi W
    Chempluschem; 2023 Aug; 88(8):e202300285. PubMed ID: 37485790
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interface engineering of the NiO/CeO
    He X; Mo Z; Liu H; Wang C
    Dalton Trans; 2023 Jul; 52(27):9456-9464. PubMed ID: 37366113
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Incorporating Catalytic Units into Nanomaterials: Rational Design of Multipurpose Catalysts for CO
    Qiu LQ; Li HR; He LN
    Acc Chem Res; 2023 Aug; 56(16):2225-2240. PubMed ID: 37535829
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High oxidation state enabled by plated Ni-P achieves superior electrocatalytic performance for 5-hydroxymethylfurfural oxidation reaction.
    Lin R; Salehi M; Guo J; Seifitokaldani A
    iScience; 2022 Aug; 25(8):104744. PubMed ID: 35942099
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simultaneous H2 Generation and Biomass Upgrading in Water by an Efficient Noble-Metal-Free Bifunctional Electrocatalyst.
    You B; Jiang N; Liu X; Sun Y
    Angew Chem Int Ed Engl; 2016 Aug; 55(34):9913-7. PubMed ID: 27417546
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Advances in Electrochemical Modification Strategies of 5-Hydroxymethylfurfural.
    Simoska O; Rhodes Z; Weliwatte S; Cabrera-Pardo JR; Gaffney EM; Lim K; Minteer SD
    ChemSusChem; 2021 Apr; 14(7):1674-1686. PubMed ID: 33577707
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly Efficient Electro-reforming of 5-Hydroxymethylfurfural on Vertically Oriented Nickel Nanosheet/Carbon Hybrid Catalysts: Structure-Function Relationships.
    Lu X; Wu KH; Zhang B; Chen J; Li F; Su BJ; Yan P; Chen JM; Qi W
    Angew Chem Int Ed Engl; 2021 Jun; 60(26):14528-14535. PubMed ID: 33877731
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inexpensive but Highly Efficient Co-Mn Mixed-Oxide Catalysts for Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid.
    Rao KTV; Rogers JL; Souzanchi S; Dessbesell L; Ray MB; Xu CC
    ChemSusChem; 2018 Sep; 11(18):3323-3334. PubMed ID: 30006949
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent Advances in the Development of 5-Hydroxymethylfurfural Oxidation with Base (Nonprecious)-Metal-Containing Catalysts.
    Pal P; Saravanamurugan S
    ChemSusChem; 2019 Jan; 12(1):145-163. PubMed ID: 30362263
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Immobilised Ruthenium Complexes for the Electrooxidation of 5-Hydroxymethylfurfural.
    Bühler J; Muntwyler A; Roithmeyer H; Adams P; Besmer ML; Blacque O; Tilley SD
    Chemistry; 2024 Apr; 30(19):e202304181. PubMed ID: 38285807
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tungsten Promoted Ni/Al
    Duan Y; Wang R; Liu Q; Qin X; Li Z
    Front Chem; 2022; 10():857199. PubMed ID: 35355788
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.