These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 37631275)
41. Optimized cultivation of porcine choroid plexus epithelial cells, a blood-cerebrospinal fluid barrier model, for studying granulocyte transmigration. Lauer AN; März M; Meyer S; Meurer M; de Buhr N; Borkowski J; Weiß C; Schroten H; Schwerk C Lab Invest; 2019 Jul; 99(8):1245-1255. PubMed ID: 30996296 [TBL] [Abstract][Full Text] [Related]
42. Merging Transport Data for Choroid Plexus with Blood-Brain Barrier to Model CNS Homeostasis and Disease More Effectively. Johanson C; Johanson N CNS Neurol Disord Drug Targets; 2016; 15(9):1151-1180. PubMed ID: 27633784 [TBL] [Abstract][Full Text] [Related]
43. The SLC16A family of monocarboxylate transporters (MCTs)--physiology and function in cellular metabolism, pH homeostasis, and fluid transport. Adijanto J; Philp NJ Curr Top Membr; 2012; 70():275-311. PubMed ID: 23177990 [TBL] [Abstract][Full Text] [Related]
44. Luteolin Enhances Choroid Plexus 5-MTHF Brain Transport to Promote Hippocampal Neurogenesis in LOD Rats. Li HZ; Liu KG; Zeng NX; Wu XF; Lu WJ; Xu HF; Yan C; Wu LL Front Pharmacol; 2022; 13():826568. PubMed ID: 35401160 [TBL] [Abstract][Full Text] [Related]
45. Enhanced prospects for drug delivery and brain targeting by the choroid plexus-CSF route. Johanson CE; Duncan JA; Stopa EG; Baird A Pharm Res; 2005 Jul; 22(7):1011-37. PubMed ID: 16028003 [TBL] [Abstract][Full Text] [Related]
46. Monocarboxylate transporters in the central nervous system: distribution, regulation and function. Pierre K; Pellerin L J Neurochem; 2005 Jul; 94(1):1-14. PubMed ID: 15953344 [TBL] [Abstract][Full Text] [Related]
47. Transport of thyroid hormone in brain. Wirth EK; Schweizer U; Köhrle J Front Endocrinol (Lausanne); 2014; 5():98. PubMed ID: 25009532 [TBL] [Abstract][Full Text] [Related]
48. Impaired monoamine and organic cation uptake in choroid plexus in mice with targeted disruption of the plasma membrane monoamine transporter (Slc29a4) gene. Duan H; Wang J J Biol Chem; 2013 Feb; 288(5):3535-44. PubMed ID: 23255610 [TBL] [Abstract][Full Text] [Related]
49. Processing mechanism of guanidinoacetate in choroid plexus epithelial cells: conversion of guanidinoacetate to creatine via guanidinoacetate N-methyltransferase and monocarboxylate transporter 12-mediated creatine release into the CSF. Jomura R; Akanuma SI; Kubo Y; Tachikawa M; Hosoya KI Fluids Barriers CNS; 2022 Jun; 19(1):42. PubMed ID: 35658878 [TBL] [Abstract][Full Text] [Related]
50. Functional and genetic analysis of choroid plexus development in zebrafish. Henson HE; Parupalli C; Ju B; Taylor MR Front Neurosci; 2014; 8():364. PubMed ID: 25426018 [TBL] [Abstract][Full Text] [Related]
51. Demonstration of a coupled metabolism-efflux process at the choroid plexus as a mechanism of brain protection toward xenobiotics. Strazielle N; Ghersi-Egea JF J Neurosci; 1999 Aug; 19(15):6275-89. PubMed ID: 10414957 [TBL] [Abstract][Full Text] [Related]
52. Immunoreactivity of urate transporters, GLUT9 and URAT1, is located in epithelial cells of the choroid plexus of human brains. Uemura N; Murakami R; Chiba Y; Yanase K; Fujihara R; Mashima M; Matsumoto K; Kawauchi M; Shirakami G; Ueno M Neurosci Lett; 2017 Oct; 659():99-103. PubMed ID: 28870626 [TBL] [Abstract][Full Text] [Related]
53. The choroid plexus-cerebrospinal fluid interface in Alzheimer's disease: more than just a barrier. Balusu S; Brkic M; Libert C; Vandenbroucke RE Neural Regen Res; 2016 Apr; 11(4):534-7. PubMed ID: 27212900 [TBL] [Abstract][Full Text] [Related]
54. Membrane transporter proteins: a challenge for CNS drug development. Girardin F Dialogues Clin Neurosci; 2006; 8(3):311-21. PubMed ID: 17117613 [TBL] [Abstract][Full Text] [Related]
55. Brain drug delivery, drug metabolism, and multidrug resistance at the choroid plexus. Ghersi-Egea JF; Strazielle N Microsc Res Tech; 2001 Jan; 52(1):83-8. PubMed ID: 11135451 [TBL] [Abstract][Full Text] [Related]
57. Subcellular localization of transporters along the rat blood-brain barrier and blood-cerebral-spinal fluid barrier by in vivo biotinylation. Roberts LM; Black DS; Raman C; Woodford K; Zhou M; Haggerty JE; Yan AT; Cwirla SE; Grindstaff KK Neuroscience; 2008 Aug; 155(2):423-38. PubMed ID: 18619525 [TBL] [Abstract][Full Text] [Related]
58. The choroid plexus-a multi-role player during infectious diseases of the CNS. Schwerk C; Tenenbaum T; Kim KS; Schroten H Front Cell Neurosci; 2015; 9():80. PubMed ID: 25814932 [TBL] [Abstract][Full Text] [Related]
59. The expression of monocarboxylate transporters in thyroid carcinoma can be associated with the morphological features of BRAF Rossi ED; Bizzarro T; Granja S; Martini M; Capodimonti S; Luca E; Fadda G; Lombardi CP; Pontecorvi A; Larocca LM; Baltazar F; Schmitt F Endocrine; 2017 May; 56(2):379-387. PubMed ID: 27484771 [TBL] [Abstract][Full Text] [Related]
60. Aquaporin-1 and Aquaporin-4 Expression in Ependyma, Choroid Plexus and Surrounding Transition Zones in the Human Brain. Bihlmaier R; Deffner F; Mattheus U; Neckel PH; Hirt B; Mack AF Biomolecules; 2023 Jan; 13(2):. PubMed ID: 36830582 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]