These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 37631275)

  • 61. Modeling immune functions of the mouse blood-cerebrospinal fluid barrier in vitro: primary rather than immortalized mouse choroid plexus epithelial cells are suited to study immune cell migration across this brain barrier.
    Lazarevic I; Engelhardt B
    Fluids Barriers CNS; 2016 Jan; 13():2. PubMed ID: 26833402
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Differential regulation of leptin transport by the choroid plexus and blood-brain barrier and high affinity transport systems for entry into hypothalamus and across the blood-cerebrospinal fluid barrier.
    Zlokovic BV; Jovanovic S; Miao W; Samara S; Verma S; Farrell CL
    Endocrinology; 2000 Apr; 141(4):1434-41. PubMed ID: 10746647
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Amyloid-beta transporter expression at the blood-CSF barrier is age-dependent.
    Pascale CL; Miller MC; Chiu C; Boylan M; Caralopoulos IN; Gonzalez L; Johanson CE; Silverberg GD
    Fluids Barriers CNS; 2011 Jul; 8():21. PubMed ID: 21740544
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A Hidden Epithelial Barrier in the Brain with a Central Role in Regulating Brain Homeostasis. Implications for Aging.
    Vandenbroucke RE
    Ann Am Thorac Soc; 2016 Dec; 13 Suppl 5():S407-S410. PubMed ID: 28005425
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Molecular heterogeneity in the choroid plexus epithelium: the 22-member γ-protocadherin family is differentially expressed, apically localized, and implicated in CSF regulation.
    Lobas MA; Helsper L; Vernon CG; Schreiner D; Zhang Y; Holtzman MJ; Thedens DR; Weiner JA
    J Neurochem; 2012 Mar; 120(6):913-27. PubMed ID: 22092001
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Metabolites and Biomarker Compounds of Neurodegenerative Diseases in Cerebrospinal Fluid.
    Wakamatsu K; Chiba Y; Murakami R; Miyai Y; Matsumoto K; Kamada M; Nonaka W; Uemura N; Yanase K; Ueno M
    Metabolites; 2022 Apr; 12(4):. PubMed ID: 35448530
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The choroid plexus is modulated by various peripheral stimuli: implications to diseases of the central nervous system.
    Marques F; Sousa JC
    Front Cell Neurosci; 2015; 9():136. PubMed ID: 26236190
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Immune response and pathogen invasion at the choroid plexus in the onset of cerebral toxoplasmosis.
    Figueiredo CA; Steffen J; Morton L; Arumugam S; Liesenfeld O; Deli MA; Kröger A; Schüler T; Dunay IR
    J Neuroinflammation; 2022 Jan; 19(1):17. PubMed ID: 35027063
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Therapeutic implications of the choroid plexus-cerebrospinal fluid interface in neuropsychiatric disorders.
    Demeestere D; Libert C; Vandenbroucke RE
    Brain Behav Immun; 2015 Nov; 50():1-13. PubMed ID: 26116435
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Aquaporin-4 expression in the human choroid plexus.
    Deffner F; Gleiser C; Mattheus U; Wagner A; Neckel PH; Fallier-Becker P; Hirt B; Mack AF
    Cell Mol Life Sci; 2022 Jan; 79(2):90. PubMed ID: 35072772
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Membrane Transporters Contributing to PGE
    Nakamura Y; Nakanishi T; Tamai I
    Biol Pharm Bull; 2018; 41(9):1337-1347. PubMed ID: 30175771
    [TBL] [Abstract][Full Text] [Related]  

  • 72. T-Lymphocytes Traffic into the Brain across the Blood-CSF Barrier: Evidence Using a Reconstituted Choroid Plexus Epithelium.
    Strazielle N; Creidy R; Malcus C; Boucraut J; Ghersi-Egea JF
    PLoS One; 2016; 11(3):e0150945. PubMed ID: 26942913
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Pb induces ferroptosis in choroid plexus epithelial cells via Fe metabolism.
    Shi F; Yang H; Sun G; Cui J; Li Z; Wang W; Zhang Y
    Neurotoxicology; 2023 Mar; 95():107-116. PubMed ID: 36642386
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The role of transthyretin in the transport of thyroid hormone to cerebrospinal fluid and brain.
    Chanoine JP; Braverman LE
    Acta Med Austriaca; 1992; 19 Suppl 1():25-8. PubMed ID: 1519447
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Physiological roles of aquaporins in the choroid plexus.
    Boassa D; Yool AJ
    Curr Top Dev Biol; 2005; 67():181-206. PubMed ID: 15949534
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Expression of HNF4alpha in the human and rat choroid plexus: implications for drug transport across the blood-cerebrospinal-fluid (CSF) barrier.
    Niehof M; Borlak J
    BMC Mol Biol; 2009 Jul; 10():68. PubMed ID: 19575803
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Choroid plexus epithelium and its role in neurological diseases.
    Liu R; Zhang Z; Chen Y; Liao J; Wang Y; Liu J; Lin Z; Xiao G
    Front Mol Neurosci; 2022; 15():949231. PubMed ID: 36340696
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Cellular distributions of monocarboxylate transporters: a review.
    Iwanaga T; Kishimoto A
    Biomed Res; 2015; 36(5):279-301. PubMed ID: 26522146
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The structure of the choroid plexus and the physiology of the choroid plexus epithelium.
    Redzic ZB; Segal MB
    Adv Drug Deliv Rev; 2004 Oct; 56(12):1695-716. PubMed ID: 15381330
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A balanced view of the cerebrospinal fluid composition and functions: Focus on adult humans.
    Spector R; Robert Snodgrass S; Johanson CE
    Exp Neurol; 2015 Nov; 273():57-68. PubMed ID: 26247808
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.