BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 37631305)

  • 1. Membrane-Active Peptides and Their Potential Biomedical Application.
    Gostaviceanu A; Gavrilaş S; Copolovici L; Copolovici DM
    Pharmaceutics; 2023 Aug; 15(8):. PubMed ID: 37631305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How Membrane-Active Peptides Get into Lipid Membranes.
    Sani MA; Separovic F
    Acc Chem Res; 2016 Jun; 49(6):1130-8. PubMed ID: 27187572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of Membrane Active Peptides Considering Multi-Objective Optimization for Biomedical Application.
    Röckendorf N; Nehls C; Gutsmann T
    Membranes (Basel); 2022 Feb; 12(2):. PubMed ID: 35207101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Topoisomeric Membrane-Active Peptides: A Review of the Last Two Decades.
    Carrera-Aubesart A; Gallo M; Defaus S; Todorovski T; Andreu D
    Pharmaceutics; 2023 Oct; 15(10):. PubMed ID: 37896211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combinatorial Library Screening with Liposomes for Discovery of Membrane Active Peptides.
    Carney RP; Thillier Y; Kiss Z; Sahabi A; Heleno Campos JC; Knudson A; Liu R; Olivos D; Saunders M; Tian L; Lam KS
    ACS Comb Sci; 2017 May; 19(5):299-307. PubMed ID: 28378995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single molecule resolution of the antimicrobial action of quantum dot-labeled sushi peptide on live bacteria.
    Leptihn S; Har JY; Chen J; Ho B; Wohland T; Ding JL
    BMC Biol; 2009 May; 7():22. PubMed ID: 19432949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane Internalization Mechanisms and Design Strategies of Arginine-Rich Cell-Penetrating Peptides.
    Hao M; Zhang L; Chen P
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antimicrobial peptides with cell-penetrating peptide properties and vice versa.
    Splith K; Neundorf I
    Eur Biophys J; 2011 Apr; 40(4):387-97. PubMed ID: 21336522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in computational modeling of α-helical membrane-active peptides.
    Polyansky AA; Chugunov AO; Vassilevski AA; Grishin EV; Efremov RG
    Curr Protein Pept Sci; 2012 Nov; 13(7):644-57. PubMed ID: 23363529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antimicrobial properties and interaction of two Trp-substituted cationic antimicrobial peptides with a lipid bilayer.
    Bi X; Wang C; Dong W; Zhu W; Shang D
    J Antibiot (Tokyo); 2014 May; 67(5):361-8. PubMed ID: 24496141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective phenylalanine to proline substitution for improved antimicrobial and anticancer activities of peptides designed on phenylalanine heptad repeat.
    Tripathi AK; Kumari T; Tandon A; Sayeed M; Afshan T; Kathuria M; Shukla PK; Mitra K; Ghosh JK
    Acta Biomater; 2017 Jul; 57():170-186. PubMed ID: 28483698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antimicrobial Peptides: Mechanisms of Action and Resistance.
    Bechinger B; Gorr SU
    J Dent Res; 2017 Mar; 96(3):254-260. PubMed ID: 27872334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anisaxins, helical antimicrobial peptides from marine parasites, kill resistant bacteria by lipid extraction and membrane disruption.
    Rončević T; Gerdol M; Mardirossian M; Maleš M; Cvjetan S; Benincasa M; Maravić A; Gajski G; Krce L; Aviani I; Hrabar J; Trumbić Ž; Derks M; Pallavicini A; Weingarth M; Zoranić L; Tossi A; Mladineo I
    Acta Biomater; 2022 Jul; 146():131-144. PubMed ID: 35470073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane Crossing and Membranotropic Activity of Cell-Penetrating Peptides: Dangerous Liaisons?
    Walrant A; Cardon S; Burlina F; Sagan S
    Acc Chem Res; 2017 Dec; 50(12):2968-2975. PubMed ID: 29172443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonhemolytic Cell-Penetrating Peptides: Site Specific Introduction of Glutamine and Lysine Residues into the α-Helical Peptide Causes Deletion of Its Direct Membrane Disrupting Ability but Retention of Its Cell Penetrating Ability.
    Kim S; Hyun S; Lee Y; Lee Y; Yu J
    Biomacromolecules; 2016 Sep; 17(9):3007-15. PubMed ID: 27442521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cationic antimicrobial peptides : issues for potential clinical use.
    Bradshaw J
    BioDrugs; 2003; 17(4):233-40. PubMed ID: 12899640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of short membrane selective antimicrobial peptides containing tryptophan and arginine residues for improved activity, salt-resistance, and biocompatibility.
    Saravanan R; Li X; Lim K; Mohanram H; Peng L; Mishra B; Basu A; Lee JM; Bhattacharjya S; Leong SS
    Biotechnol Bioeng; 2014 Jan; 111(1):37-49. PubMed ID: 23860860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peptide-Mediated Delivery of Chemical Probes and Therapeutics to Mitochondria.
    Jean SR; Ahmed M; Lei EK; Wisnovsky SP; Kelley SO
    Acc Chem Res; 2016 Sep; 49(9):1893-902. PubMed ID: 27529125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipid-packing perturbation of model membranes by pH-responsive antimicrobial peptides.
    Alvares DS; Viegas TG; Ruggiero Neto J
    Biophys Rev; 2017 Oct; 9(5):669-682. PubMed ID: 28853007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.