These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 37631404)

  • 1. Development of Electrochromic Devices, Based on Polymeric Gel, for Energy Saving Applications.
    Rizzuto C; Barberi RC; Castriota M
    Polymers (Basel); 2023 Aug; 15(16):. PubMed ID: 37631404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Air-Stable, Self-Bleaching Electrochromic Device Based on Viologen- and Ferrocene-Containing Triflimide Redox Ionic Liquids.
    Gélinas B; Das D; Rochefort D
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28726-28736. PubMed ID: 28731317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoresponsive Smart Coloration Electrochromic Supercapacitor.
    Yun TG; Kim D; Kim YH; Park M; Hyun S; Han SM
    Adv Mater; 2017 Aug; 29(32):. PubMed ID: 28640386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quasi-Solid-State Electrochromic Cells with Energy Storage Properties Made with Inkjet Printing.
    Theodosiou K; Giannopoulos P; Georgakopoulos T; Stathatos E
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32708217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-Spin Fe Redox-Based Prussian Blue with excellent selective dual-band electrochromic modulation and energy-saving applications.
    Tang D; Wang J; Liu XA; Tong Z; Ji H; Qu HY
    J Colloid Interface Sci; 2023 Apr; 636():351-362. PubMed ID: 36638574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible Inorganic All-Solid-State Electrochromic Devices toward Visual Energy Storage and Two-Dimensional Color Tunability.
    Ding Y; Wang M; Mei Z; Diao X
    ACS Appl Mater Interfaces; 2023 Mar; 15(12):15646-15656. PubMed ID: 36926798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel Prussian White@MnO
    Ding Y; Wang M; Mei Z; Diao X
    ACS Appl Mater Interfaces; 2022 Nov; 14(43):48833-48843. PubMed ID: 36269142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heat-Insulating Black Electrochromic Device Enabled by Reversible Nickel-Copper Electrodeposition.
    Guo X; Chen J; Eh AL; Poh WC; Jiang F; Jiang F; Chen J; Lee PS
    ACS Appl Mater Interfaces; 2022 May; 14(17):20237-20246. PubMed ID: 35467337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust and stable dual-band electrochromic smart window with multicolor tunability.
    Wang Q; Cao S; Meng Q; Wang K; Yang T; Zhao J; Zou B
    Mater Horiz; 2023 Mar; 10(3):960-966. PubMed ID: 36606592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-Band Electrochromic Devices with a Transparent Conductive Capacitive Charge-Balancing Anode.
    Zhang S; Li Y; Zhang T; Cao S; Yao Q; Lin H; Ye H; Fisher A; Lee JY
    ACS Appl Mater Interfaces; 2019 Dec; 11(51):48062-48070. PubMed ID: 31790202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bifunctional Application of Viologen-MoS
    Kandpal S; Ghosh T; Rani C; Tanwar M; Sharma M; Rani S; Pathak DK; Bhatia R; Sameera I; Jayabalan J; Kumar R
    ACS Mater Au; 2022 May; 2(3):293-300. PubMed ID: 36855378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochromic and colorimetric properties of nickel(II) oxide thin films prepared by aerosol-assisted chemical vapor deposition.
    Sialvi MZ; Mortimer RJ; Wilcox GD; Teridi AM; Varley TS; Wijayantha KG; Kirk CA
    ACS Appl Mater Interfaces; 2013 Jun; 5(12):5675-82. PubMed ID: 23748903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochromic Asymmetric Supercapacitor Windows Enable Direct Determination of Energy Status by the Naked Eye.
    Zhong Y; Chai Z; Liang Z; Sun P; Xie W; Zhao C; Mai W
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):34085-34092. PubMed ID: 28884570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Quasi-Solid-State Tristate Reversible Electrochemical Mirror Device with Enhanced Stability.
    Eh AL; Chen J; Yu SH; Thangavel G; Zhou X; Cai G; Li S; Chua DHC; Lee PS
    Adv Sci (Weinh); 2020 Jul; 7(13):1903198. PubMed ID: 32670746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inkjet-printed all solid-state electrochromic devices based on NiO/WO3 nanoparticle complementary electrodes.
    Cai G; Darmawan P; Cui M; Chen J; Wang X; Eh AL; Magdassi S; Lee PS
    Nanoscale; 2016 Jan; 8(1):348-57. PubMed ID: 26610811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochromic Properties of Reactive Magnetron Sputtered WO₃ Thin Films Prepared by Neon as Sputter Gas.
    Uday Kumar K; Subrahmanyam A
    J Nanosci Nanotechnol; 2020 Jun; 20(6):3724-3733. PubMed ID: 31748070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-contrast solid-state electrochromic devices of viologen-bridged polysilsesquioxane nanoparticles fabricated by layer-by-layer assembly.
    Jain V; Khiterer M; Montazami R; Yochum HM; Shea KJ; Heflin JR
    ACS Appl Mater Interfaces; 2009 Jan; 1(1):83-9. PubMed ID: 20355758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Performance Electrochromic Devices Based on Poly[Ni(salen)]-Type Polymer Films.
    Nunes M; Araújo M; Fonseca J; Moura C; Hillman R; Freire C
    ACS Appl Mater Interfaces; 2016 Jun; 8(22):14231-43. PubMed ID: 27175794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High Electrochromic Performance of Perylene Bisimide/ZnO Hybrid Films: An Efficient, Energy-Saving, and Green Route.
    Tao B; Ouyang M; Hua Q; Kong C; Zhang J; Li W; Bai R; Liu J; Lv X; Zhang C
    ACS Appl Mater Interfaces; 2023 Mar; 15(10):13730-13739. PubMed ID: 36854655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective Electrochromic Regulation for Near-Infrared and Visible Light via Porous Tungsten Oxide Films with Core/Shell Architecture.
    Liu H; Zhang Y; Lei P; Feng J; Jia S; Huang J; Hu C; Bian C; Cai G
    ACS Appl Mater Interfaces; 2023 May; 15(19):23412-23420. PubMed ID: 37129984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.