These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 37631437)

  • 1. Effect of Nitrogen Arc Discharge Plasma Treatment on Physicochemical Properties and Biocompatibility of PLA-Based Scaffolds.
    Laput OA; Vasenina IV; Korzhova AG; Bryuzgina AA; Khomutova UV; Tuyakova SG; Akhmadeev YH; Shugurov VV; Bolbasov EN; Tverdokhlebov SI; Chernyavskii AV; Kurzina IA
    Polymers (Basel); 2023 Aug; 15(16):. PubMed ID: 37631437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-Temperature Barrier Discharge Plasma Modification of Scaffolds Based on Polylactic Acid.
    Laput OA; Vasenina IV; Shapovalova YG; Ochered'ko AN; Chernyavskii AV; Kudryashov SV; Kurzina IA
    ACS Appl Mater Interfaces; 2022 Sep; 14(37):41742-41750. PubMed ID: 36069153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitrogen Plasma Treatment of Composite Materials Based on Polylactic Acid and Hydroxyapatite.
    Khomutova UV; Korzhova AG; Bryuzgina AA; Laput OA; Vasenina IV; Akhmadeev YH; Shugurov VV; Azhazha II; Shapovalova YG; Chernyavskii AV; Kurzina IA
    Polymers (Basel); 2024 Feb; 16(5):. PubMed ID: 38475310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration.
    Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ
    Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomimetic, mussel-inspired surface modification of 3D-printed biodegradable polylactic acid scaffolds with nano-hydroxyapatite for bone tissue engineering.
    Chi M; Li N; Cui J; Karlin S; Rohr N; Sharma N; Thieringer FM
    Front Bioeng Biotechnol; 2022; 10():989729. PubMed ID: 36159699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasma surface modification of polylactic acid to promote interaction with fibroblasts.
    Jacobs T; Declercq H; De Geyter N; Cornelissen R; Dubruel P; Leys C; Beaurain A; Payen E; Morent R
    J Mater Sci Mater Med; 2013 Feb; 24(2):469-78. PubMed ID: 23124527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alkali treatment facilitates functional nano-hydroxyapatite coating of 3D printed polylactic acid scaffolds.
    Chen W; Nichols L; Brinkley F; Bohna K; Tian W; Priddy MW; Priddy LB
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 120():111686. PubMed ID: 33545848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atmospheric pressure cold plasma versus wet-chemical surface treatments for carboxyl functionalization of polylactic acid: A first step toward covalent immobilization of bioactive molecules.
    Durán IR; Vanslambrouck S; Chevallier P; Hoesli CA; Laroche G
    Colloids Surf B Biointerfaces; 2020 May; 189():110847. PubMed ID: 32086024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of Limbal Stem Cells Adhered to Melt Electrospun Silk Fibroin and Gelatin-Modified Polylactic Acid Scaffolds.
    Zdraveva E; Bendelja K; Bočkor L; Dolenec T; Mijović B
    Polymers (Basel); 2023 Feb; 15(3):. PubMed ID: 36772078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physicochemical Properties of UV-Irradiated, Biaxially Oriented PLA Tubular Scaffolds.
    Bhati P; Srivastava A; Ahuja R; Chauhan P; Vashisth P; Bhatnagar N
    Polymers (Basel); 2023 Feb; 15(5):. PubMed ID: 36904337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the Effectiveness of Oxygen Plasma and Alkali Surface Treatments to Modify the Properties of Polylactic Acid Scaffolds.
    Donate R; Alemán-Domínguez ME; Monzón M
    Polymers (Basel); 2021 May; 13(10):. PubMed ID: 34070229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polylactic Acid/Polyaniline Nanofibers Subjected to Pre- and Post-Electrospinning Plasma Treatments for Refined Scaffold-Based Nerve Tissue Engineering Applications.
    Guo Y; Ghobeira R; Aliakbarshirazi S; Morent R; De Geyter N
    Polymers (Basel); 2022 Dec; 15(1):. PubMed ID: 36616422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocompatibility and Physico-Chemical Properties of Highly Porous PLA/HA Scaffolds for Bone Reconstruction.
    Zimina A; Senatov F; Choudhary R; Kolesnikov E; Anisimova N; Kiselevskiy M; Orlova P; Strukova N; Generalova M; Manskikh V; Gromov A; Karyagina A
    Polymers (Basel); 2020 Dec; 12(12):. PubMed ID: 33316955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of new biocompatible 3D printed graphene oxide-based scaffolds.
    Belaid H; Nagarajan S; Teyssier C; Barou C; Barés J; Balme S; Garay H; Huon V; Cornu D; Cavaillès V; Bechelany M
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110595. PubMed ID: 32204059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface modification of biomaterials based on high-molecular polylactic acid and their effect on inflammatory reactions of primary human monocyte-derived macrophages: perspective for personalized therapy.
    Stankevich KS; Gudima A; Filimonov VD; Klüter H; Mamontova EM; Tverdokhlebov SI; Kzhyshkowska J
    Mater Sci Eng C Mater Biol Appl; 2015 Jun; 51():117-26. PubMed ID: 25842115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The surface grafting of graphene oxide with poly(ethylene glycol) as a reinforcement for poly(lactic acid) nanocomposite scaffolds for potential tissue engineering applications.
    Zhang C; Wang L; Zhai T; Wang X; Dan Y; Turng LS
    J Mech Behav Biomed Mater; 2016 Jan; 53():403-413. PubMed ID: 26409231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrospun Poly(lactic acid) and Silk Fibroin Based Nanofibrous Scaffold for Meniscus Tissue Engineering.
    Promnil S; Ruksakulpiwat C; Numpaisal PO; Ruksakulpiwat Y
    Polymers (Basel); 2022 Jun; 14(12):. PubMed ID: 35746011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulated Surface Morphology of Polyaniline/Polylactic Acid Composite Nanofibers via Various Inorganic Acids Doping for Enhancing Biocompatibility in Tissue Engineering.
    Liu R; Zhang S; Zhao C; Yang D; Cui T; Liu Y; Min Y
    Nanoscale Res Lett; 2021 Jan; 16(1):4. PubMed ID: 33404823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A natural biomineral for enhancing the biomineralization and cell response of 3D printed polylactic acid bone scaffolds.
    Guo F; Wang E; Yang Y; Mao Y; Liu C; Bu W; Li P; Zhao L; Jin Q; Liu B; Wang S; You H; Long Y; Zhou N; Guo W
    Int J Biol Macromol; 2023 Jul; 242(Pt 1):124728. PubMed ID: 37150372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Additive manufacturing of PLA-Mg composite scaffolds for hard tissue engineering applications.
    Bakhshi R; Mohammadi-Zerankeshi M; Mehrabi-Dehdezi M; Alizadeh R; Labbaf S; Abachi P
    J Mech Behav Biomed Mater; 2023 Feb; 138():105655. PubMed ID: 36621086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.