These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37631437)

  • 21. Polylactic acid film surface functionalized by zwitterionic poly[2-(methacryloyloxy)ethyl choline phosphate] with improved biocompatibility.
    Zhao X; Xin Q; Yang D; Zhai X; Li J; Chen X; Li J
    Colloids Surf B Biointerfaces; 2022 Jun; 214():112461. PubMed ID: 35305321
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biomimetic composite scaffolds based on surface modification of polydopamine on electrospun poly(lactic acid)/cellulose nanofibrils.
    Yang Z; Si J; Cui Z; Ye J; Wang X; Wang Q; Peng K; Chen W; Chen SC
    Carbohydr Polym; 2017 Oct; 174():750-759. PubMed ID: 28821128
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Physiologic Response Evaluation of Human Foetal Osteoblast Cells within Engineered 3D-Printed Polylactic Acid Scaffolds.
    Rizzo MG; Palermo N; Alibrandi P; Sciuto EL; Del Gaudio C; Filardi V; Fazio B; Caccamo A; Oddo S; Calabrese G; Conoci S
    Biology (Basel); 2023 Mar; 12(3):. PubMed ID: 36979116
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Endothelial cell behaviour on gas-plasma-treated PLA surfaces: the roles of surface chemistry and roughness.
    Shah A; Shah S; Mani G; Wenke J; Agrawal M
    J Tissue Eng Regen Med; 2011 Apr; 5(4):301-12. PubMed ID: 21413158
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cold Oxygen Plasma Treatments for the Improvement of the Physicochemical and Biodegradable Properties of Polylactic Acid Films for Food Packaging.
    Song AY; Oh YA; Roh SH; Kim JH; Min SC
    J Food Sci; 2016 Jan; 81(1):E86-96. PubMed ID: 26646616
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polylactic acid-based porous scaffolds doped with calcium silicate and dicalcium phosphate dihydrate designed for biomedical application.
    Gandolfi MG; Zamparini F; Degli Esposti M; Chiellini F; Aparicio C; Fava F; Fabbri P; Taddei P; Prati C
    Mater Sci Eng C Mater Biol Appl; 2018 Jan; 82():163-181. PubMed ID: 29025644
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biocompatibility of poly(lactic acid) with incorporated graphene-based materials.
    Pinto AM; Moreira S; Gonçalves IC; Gama FM; Mendes AM; Magalhães FD
    Colloids Surf B Biointerfaces; 2013 Apr; 104():229-38. PubMed ID: 23333912
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3D direct printing of composite bone scaffolds containing polylactic acid and spray dried mesoporous bioactive glass-ceramic microparticles.
    Saberi A; Behnamghader A; Aghabarari B; Yousefi A; Majda D; Huerta MVM; Mozafari M
    Int J Biol Macromol; 2022 May; 207():9-22. PubMed ID: 35181332
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fabrication of super-hydrophilic and highly open-porous poly (lactic acid) scaffolds using supercritical carbon dioxide foaming.
    Ren Q; Zhu X; Li W; Wu M; Cui S; Ling Y; Ma X; Wang G; Wang L; Zheng W
    Int J Biol Macromol; 2022 Apr; 205():740-748. PubMed ID: 35331790
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Description of D-glucosamine immobilization kinetics onto poly(lactic acid) surface via a multistep physicochemical approach for preparation of novel active biomaterials.
    Swilem AE; Lehocký M; Humpolíček P; Kucekova Z; Novák I; Mičušík M; Abd El-Rehim HA; Hegazy EA; Hamed AA; Kousal J
    J Biomed Mater Res A; 2017 Nov; 105(11):3176-3188. PubMed ID: 28707422
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 3D printed polylactic acid/gelatin-nano-hydroxyapatite/platelet-rich plasma scaffold for critical-sized skull defect regeneration.
    Bahraminasab M; Doostmohammadi N; Talebi A; Arab S; Alizadeh A; Ghanbari A; Salati A
    Biomed Eng Online; 2022 Dec; 21(1):86. PubMed ID: 36503442
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering.
    Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Correlation between porosity and physicochemical and biological properties of electrospinning PLA/PVA membranes for skin regeneration.
    Kaniuk E; Lechowska-Liszka A; Gajek M; Nikodem A; Ścisłowska-Czarnecka A; Rapacz-Kmita A; Stodolak-Zych E
    Biomater Adv; 2023 Sep; 152():213506. PubMed ID: 37364396
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Core-shell PLA/Kef hybrid scaffolds for skin tissue engineering applications prepared by direct kefiran coating on PLA electrospun fibers optimized via air-plasma treatment.
    Lopresti F; Campora S; Tirri G; Capuana E; Carfì Pavia F; Brucato V; Ghersi G; La Carrubba V
    Mater Sci Eng C Mater Biol Appl; 2021 Aug; 127():112248. PubMed ID: 34225887
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biomimetic Hierarchical Structuring of PLA by Ultra-Short Laser Pulses for Processing of Tissue Engineered Matrices: Study of Cellular and Antibacterial Behavior.
    Daskalova A; Angelova L; Filipov E; Aceti D; Mincheva R; Carrete X; Kerdjoudj H; Dubus M; Chevrier J; Trifonov A; Buchvarov I
    Polymers (Basel); 2021 Aug; 13(15):. PubMed ID: 34372179
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Acceleration of bone repair in critical-size defect using angiopoietin-2 associated with novel carbon nanotubes scaffold via mitophagy-pyroptosis pathway.
    Yin J; Tai ZY; Hu Q; Liu Y; Wang B; Zhu C; Liu XH
    Eur Rev Med Pharmacol Sci; 2022 Dec; 26(23):8969-8983. PubMed ID: 36524516
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrospun Poly-L-Lactic Acid Scaffolds Surface-Modified via Reactive Magnetron Sputtering Using Different Mixing Ratios of Nitrogen and Xenon.
    Maryin PV; Tran TH; Frolova AA; Buldakov MA; Choinzonov EL; Kozelskaya AI; Rutkowski S; Tverdokhlebov SI
    Polymers (Basel); 2023 Jul; 15(13):. PubMed ID: 37447614
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biocompatibility Assessment of Polylactic Acid (PLA) and Nanobioglass (n-BG) Nanocomposites for Biomedical Applications.
    Castro JI; Valencia Llano CH; Tenorio DL; Saavedra M; Zapata P; Navia-Porras DP; Delgado-Ospina J; Chaur MN; Hernández JHM; Grande-Tovar CD
    Molecules; 2022 Jun; 27(11):. PubMed ID: 35684575
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of phosphate-based glass fibre surface properties on thermally produced poly(lactic acid) matrix composites.
    Mohammadi MS; Ahmed I; Muja N; Rudd CD; Bureau MN; Nazhat SN
    J Mater Sci Mater Med; 2011 Dec; 22(12):2659-72. PubMed ID: 22002512
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced bone tissue regeneration using a 3D-printed poly(lactic acid)/Ti6Al4V composite scaffold with plasma treatment modification.
    Zarei M; Shabani Dargah M; Hasanzadeh Azar M; Alizadeh R; Mahdavi FS; Sayedain SS; Kaviani A; Asadollahi M; Azami M; Beheshtizadeh N
    Sci Rep; 2023 Feb; 13(1):3139. PubMed ID: 36823295
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.