These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 37631504)

  • 21. Extraction and characterization of nanocellulose from waste of date palm "Phoenix dactylifera″ as reinforcement of polymer composites.
    Bouzidi N; Kadri M; Chouana T; Belkhalfa H; Henni A; Bouhadda Y
    Acta Chim Slov; 2024 Apr; 71(2):186-196. PubMed ID: 38919109
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Endo-Exoglucanase Synergism for Cellulose Nanofibril Production Assessment and Characterization.
    Ramírez Brenes RG; Chaves LDS; Bojorge N; Pereira N
    Molecules; 2023 Jan; 28(3):. PubMed ID: 36770616
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Xylanase increases the selectivity of the enzymatic hydrolysis with endoglucanase to produce cellulose nanocrystals with improved properties.
    Dias IKR; Siqueira GA; Arantes V
    Int J Biol Macromol; 2022 Nov; 220():589-600. PubMed ID: 35963352
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The comparison of the properties of nanocellulose isolated from colonial and solitary marine tunicates.
    Chanthathamrongsiri N; Petchsomrit A; Leelakanok N; Siranonthana N; Sirirak T
    Heliyon; 2021 Aug; 7(8):e07819. PubMed ID: 34458637
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Isolation and characterization of cellulose nanocrystals from pineapple crown waste and their potential uses.
    Prado KS; Spinacé MAS
    Int J Biol Macromol; 2019 Feb; 122():410-416. PubMed ID: 30385342
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of mechanical pretreatment to isolate cellulose nanocrystals by sulfuric acid hydrolysis.
    Pirich CL; Picheth GF; Machado JPE; Sakakibara CN; Martin AA; de Freitas RA; Sierakowski MR
    Int J Biol Macromol; 2019 Jun; 130():622-626. PubMed ID: 30831162
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of Cellulase-Treated Fibers and Resulting Cellulose Nanocrystals Generated through Acid Hydrolysis.
    Beyene D; Chae M; Dai J; Danumah C; Tosto F; Demesa AG; Bressler DC
    Materials (Basel); 2018 Jul; 11(8):. PubMed ID: 30042345
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characteristics of sulfated and carboxylated cellulose nanocrystals extracted from Juncus plant stems.
    Kassab Z; Syafri E; Tamraoui Y; Hannache H; Qaiss AEK; El Achaby M
    Int J Biol Macromol; 2020 Jul; 154():1419-1425. PubMed ID: 31733239
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanical and thermal properties of Posidonia oceanica cellulose nanocrystal reinforced polymer.
    Bettaieb F; Khiari R; Dufresne A; Mhenni MF; Belgacem MN
    Carbohydr Polym; 2015 Jun; 123():99-104. PubMed ID: 25843839
    [TBL] [Abstract][Full Text] [Related]  

  • 30. From Cellulose Nanospheres, Nanorods to Nanofibers: Various Aspect Ratio Induced Nucleation/Reinforcing Effects on Polylactic Acid for Robust-Barrier Food Packaging.
    Yu HY; Zhang H; Song ML; Zhou Y; Yao J; Ni QQ
    ACS Appl Mater Interfaces; 2017 Dec; 9(50):43920-43938. PubMed ID: 29171751
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oxidized Cellulose Nanocrystals from Durian Peel Waste by Ammonium Persulfate Oxidation.
    Pratiwi H; Kusmono ; Wildan MW
    ACS Omega; 2023 Aug; 8(33):30262-30272. PubMed ID: 38174106
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Extraction and Characterization of Cellulose Nanocrystals from Tea Leaf Waste Fibers.
    Abdul Rahman NH; Chieng BW; Ibrahim NA; Abdul Rahman N
    Polymers (Basel); 2017 Nov; 9(11):. PubMed ID: 30965890
    [TBL] [Abstract][Full Text] [Related]  

  • 33.
    Risite H; Salim MH; Oudinot BT; Ablouh EH; Joyeux HT; Sehaqui H; Razafimahatratra JHA; Qaiss AEK; El Achaby M; Kassab Z
    Waste Biomass Valorization; 2022; 13(4):2411-2423. PubMed ID: 35096210
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reuse of waste cotton cloth for the extraction of cellulose nanocrystals.
    Wang Z; Yao Z; Zhou J; Zhang Y
    Carbohydr Polym; 2017 Feb; 157():945-952. PubMed ID: 27988013
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The emergence of hybrid cellulose nanomaterials as promising biomaterials.
    Las-Casas B; Dias IKR; Yupanqui-Mendoza SL; Pereira B; Costa GR; Rojas OJ; Arantes V
    Int J Biol Macromol; 2023 Oct; 250():126007. PubMed ID: 37524277
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Isolation and characterization of nanocrystalline cellulose from cocoa pod husk (CPH) biomass wastes.
    Akinjokun AI; Petrik LF; Ogunfowokan AO; Ajao J; Ojumu TV
    Heliyon; 2021 Apr; 7(4):e06680. PubMed ID: 33889783
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Revalorization of selected municipal solid wastes as new precursors of "green" nanocellulose via a novel one-pot isolation system: A source perspective.
    Chen YW; Lee HV
    Int J Biol Macromol; 2018 Feb; 107(Pt A):78-92. PubMed ID: 28860064
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-yield production of rod-like and spherical nanocellulose by controlled enzymatic hydrolysis of mechanically pretreated cellulose.
    Dias IKR; Lacerda BK; Arantes V
    Int J Biol Macromol; 2023 Jul; 242(Pt 4):125053. PubMed ID: 37244329
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of bionanocomposite films prepared with agar and paper-mulberry pulp nanocellulose.
    Reddy JP; Rhim JW
    Carbohydr Polym; 2014 Sep; 110():480-8. PubMed ID: 24906782
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Production of Cellulose Nanocrystals from Australian Wood Sources.
    Thompson L; Nikzad M; Sbarski I; Azadmanjiri J; Ren J; Yu A
    J Nanosci Nanotechnol; 2020 Sep; 20(9):5642-5647. PubMed ID: 32331150
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.