BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 37631551)

  • 1. Semisupervised Deep Learning for the Detection of Foreign Materials on Poultry Meat with Near-Infrared Hyperspectral Imaging.
    Campos RL; Yoon SC; Chung S; Bhandarkar SM
    Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-Destructive Detection of Bone Fragments Embedded in Meat Using Hyperspectral Reflectance Imaging Technique.
    Lim J; Lee A; Kang J; Seo Y; Kim B; Kim G; Kim SM
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32708061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-Destructive Detection Pilot Study of Vegetable Organic Residues Using VNIR Hyperspectral Imaging and Deep Learning Techniques.
    Seo Y; Kim G; Lim J; Lee A; Kim B; Jang J; Mo C; Kim MS
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33919118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of quality traits and grades of intact chicken breast fillets by hyperspectral imaging.
    Yang Y; Wang W; Zhuang H; Yoon SC; Jiang H
    Br Poult Sci; 2021 Feb; 62(1):46-52. PubMed ID: 32875810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Early Detection of Plant Viral Disease Using Hyperspectral Imaging and Deep Learning.
    Nguyen C; Sagan V; Maimaitiyiming M; Maimaitijiang M; Bhadra S; Kwasniewski MT
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33499335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and comparison of classification models on VIS-NIR hyperspectral imaging spectra for qualitative detection of the Staphylococcus aureus in fresh chicken breast.
    Qiu R; Zhao Y; Kong D; Wu N; He Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jan; 285():121838. PubMed ID: 36108407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-destructive discrimination of homochromatic foreign materials in cut tobacco based on VIS-NIR hyperspectral imaging.
    Liang J; Wang Y; Shi Y; Huang X; Li Z; Zhang X; Zou X; Shi J
    J Sci Food Agric; 2023 Jul; 103(9):4545-4552. PubMed ID: 36840508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid Identification of Infectious Pathogens at the Single-Cell Level via Combining Hyperspectral Microscopic Images and Deep Learning.
    Tao C; Du J; Wang J; Hu B; Zhang Z
    Cells; 2023 Jan; 12(3):. PubMed ID: 36766719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of Turtle-Shell Growth Year Using Hyperspectral Imaging Combined with an Enhanced Spatial-Spectral Attention 3DCNN and a Transformer.
    Wang T; Xu Z; Hu H; Xu H; Zhao Y; Mao X
    Molecules; 2023 Sep; 28(17):. PubMed ID: 37687257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generative Adversarial Networks and Conditional Random Fields for Hyperspectral Image Classification.
    Zhong Z; Li J; Clausi DA; Wong A
    IEEE Trans Cybern; 2020 Jul; 50(7):3318-3329. PubMed ID: 31170085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integration of spectral and textural features of visible and near-infrared hyperspectral imaging for differentiating between normal and white striping broiler breast meat.
    Jiang H; Yoon SC; Zhuang H; Wang W; Li Y; Yang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Apr; 213():118-126. PubMed ID: 30684880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plant disease identification using explainable 3D deep learning on hyperspectral images.
    Nagasubramanian K; Jones S; Singh AK; Sarkar S; Singh A; Ganapathysubramanian B
    Plant Methods; 2019; 15():98. PubMed ID: 31452674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near-infrared hyperspectral imaging in tandem with partial least squares regression and genetic algorithm for non-destructive determination and visualization of Pseudomonas loads in chicken fillets.
    Feng YZ; Sun DW
    Talanta; 2013 May; 109():74-83. PubMed ID: 23618142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multimodal Deep Learning and Visible-Light and Hyperspectral Imaging for Fruit Maturity Estimation.
    Garillos-Manliguez CA; Chiang JY
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33670232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Near-infrared hyperspectral imaging technology combined with deep convolutional generative adversarial network to predict oil content of single maize kernel.
    Zhang L; Wang Y; Wei Y; An D
    Food Chem; 2022 Feb; 370():131047. PubMed ID: 34626928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discrimination of unsound wheat kernels based on deep convolutional generative adversarial network and near-infrared hyperspectral imaging technology.
    Li H; Zhang L; Sun H; Rao Z; Ji H
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Mar; 268():120722. PubMed ID: 34902690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of Chili Foreign Objects Using Hyperspectral Imaging Combined with Chemometric and Target Detection Algorithms.
    Shu Z; Li X; Liu Y
    Foods; 2023 Jul; 12(13):. PubMed ID: 37444353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Practical Method for Blind Pixel Detection for the Push-Broom Thermal-Infrared Hyperspectral Imager.
    Liu B; Du Y; Liu C; Li Y
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Meat quality evaluation by hyperspectral imaging technique: an overview.
    Elmasry G; Barbin DF; Sun DW; Allen P
    Crit Rev Food Sci Nutr; 2012; 52(8):689-711. PubMed ID: 22591341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blood Stain Classification with Hyperspectral Imaging and Deep Neural Networks.
    Książek K; Romaszewski M; Głomb P; Grabowski B; Cholewa M
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33233358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.