These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37631583)

  • 1. Vision-Aided Localization and Mapping in Forested Environments Using Stereo Images.
    Wells LA; Chung W
    Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Benefits of Multi-Constellation/Multi-Frequency GNSS in a Tightly Coupled GNSS/IMU/Odometry Integration Algorithm.
    Reuper B; Becker M; Leinen S
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30213078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time positioning in logging: Effects of forest stand characteristics, topography, and line-of-sight obstructions on GNSS-RF transponder accuracy and radio signal propagation.
    Zimbelman EG; Keefe RF
    PLoS One; 2018; 13(1):e0191017. PubMed ID: 29324794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The applicability of recreation-grade GNSS receiver (GPS watch, Suunto Ambit Peak 3) in a forested and an open area compared to a mapping-grade receiver (Trimble Juno T41).
    Lee T; Bettinger P; Cieszewski CJ; Gutierrez Garzon AR
    PLoS One; 2020; 15(4):e0231532. PubMed ID: 32302372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On-line Smoothing and Error Modelling for Integration of GNSS and Visual Odometry.
    Duong TT; Chiang KW; Le DT
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31795405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tightly-Coupled GNSS/Vision Using a Sky-Pointing Camera for Vehicle Navigation in Urban Areas.
    Gakne PV; O'Keefe K
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29673230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of nearby trees on the positional accuracy of GNSS receivers in a forest environment.
    Lee T; Bettinger P; Merry K; Cieszewski C
    PLoS One; 2023; 18(3):e0283090. PubMed ID: 36920964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A GNSS/INS/LiDAR Integration Scheme for UAV-Based Navigation in GNSS-Challenging Environments.
    Elamin A; Abdelaziz N; El-Rabbany A
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pole-Like Object Extraction and Pole-Aided GNSS/IMU/LiDAR-SLAM System in Urban Area.
    Liu T; Chang L; Niu X; Liu J
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33322184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GNSS/LiDAR-Based Navigation of an Aerial Robot in Sparse Forests.
    Chiella ACB; Machado HN; Teixeira BOS; Pereira GAS
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31547079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate Collaborative Globally-Referenced Digital Mapping with Standard GNSS.
    Narula L; Wooten MJ; Murrian MJ; LaChapelle DM; Humphreys TE
    Sensors (Basel); 2018 Jul; 18(8):. PubMed ID: 30060582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Species discrimination and individual tree detection for predicting main dendrometric characteristics in mixed temperate forests by use of airborne laser scanning and ultra-high-resolution imagery.
    Apostol B; Petrila M; Lorenţ A; Ciceu A; Gancz V; Badea O
    Sci Total Environ; 2020 Jan; 698():134074. PubMed ID: 31505359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radar and Visual Odometry Integrated System Aided Navigation for UAVS in GNSS Denied Environment.
    Mostafa M; Zahran S; Moussa A; El-Sheimy N; Sesay A
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30142948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-Time Vehicle Positioning and Mapping Using Graph Optimization.
    Das A; Elfring J; Dubbelman G
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33923735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Image Mapping Accuracy Evaluation Using UAV with Standalone, Differential (RTK), and PPP GNSS Positioning Techniques in an Abandoned Mine Site.
    Kim H; Hyun CU; Park HD; Cha J
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visual Odometry Using Pixel Processor Arrays for Unmanned Aerial Systems in GPS Denied Environments.
    McConville A; Bose L; Clarke R; Mayol-Cuevas W; Chen J; Greatwood C; Carey S; Dudek P; Richardson T
    Front Robot AI; 2020; 7():126. PubMed ID: 33501292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GNSS-Assisted Integrated Sensor Orientation with Sensor Pre-Calibration for Accurate Corridor Mapping.
    Zhou Y; Rupnik E; Faure PH; Pierrot-Deseilligny M
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30149517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Achieving Reliable Intervehicle Positioning Based on Redheffer Weighted Least Squares Model Under Multi-GNSS Outages.
    Havyarimana V; Xiao Z; Semong T; Bai J; Chen H; Jiao L
    IEEE Trans Cybern; 2023 Feb; 53(2):1039-1050. PubMed ID: 34464282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Precise Point Positioning Using Triple GNSS Constellations in Various Modes.
    Afifi A; El-Rabbany A
    Sensors (Basel); 2016 May; 16(6):. PubMed ID: 27240376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of Static Autonomous GNSS Positioning Accuracy Using Single-, Dual-, and Tri-Frequency Smartphones in Forest Canopy Environments.
    Purfürst T
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35162034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.