These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 37631805)

  • 1. Microwave Electrometry with Multi-Photon Coherence in Rydberg Atoms.
    Yin Z; Li Q; Song X; Jia Z; Parniak M; Lu X; Peng Y
    Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced microwave metrology using an optical grating in Rydberg atoms.
    Zhao S; Yin Z; Song X; Jia Z; Wang L; Chen B; Zeng Q; Peng Y
    Appl Opt; 2023 May; 62(14):3747-3752. PubMed ID: 37706992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proposal of Rydberg atomic receiver for amplitude-modulated microwave signals with active Raman gain.
    Cai Y; Wang J; Lin L; Lu X; Li Y; Peng Y
    Appl Opt; 2020 Oct; 59(28):8612-8617. PubMed ID: 33104542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dispersive microwave electrometry using Zeeman frequency modulation spectroscopy of electromagnetically induced transparency in Rydberg atoms.
    Jia F; Yu Y; Liu X; Zhang X; Zhang L; Wang F; Mei J; Zhang J; Xie F; Zhong Z
    Appl Opt; 2020 Sep; 59(27):8253-8258. PubMed ID: 32976410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum sensing of microwave electric fields based on Rydberg atoms.
    Yuan J; Yang W; Jing M; Zhang H; Jiao Y; Li W; Zhang L; Xiao L; Jia S
    Rep Prog Phys; 2023 Sep; 86(10):. PubMed ID: 37604116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitive detection of radio-frequency field phase with interacting dark states in Rydberg atoms.
    Lin L; He Y; Yin Z; Li D; Jia Z; Zhao Y; Chen B; Peng Y
    Appl Opt; 2022 Feb; 61(6):1427-1433. PubMed ID: 35201026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-imaginary spectrum decomposition of the transparency spectra in microwave dressed Rydberg systems.
    Niu W; Qin L; Shi Z; Zhang Y; Xia S; Feng X; Wang Q; Liu J; Zhao Z; Zhu Z; Li W; Zhao X
    Opt Express; 2024 Jun; 32(12):21374-21388. PubMed ID: 38859492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pole analysis of EIT-AT spectrum with Rydberg atoms.
    Shi M; Jiao Y; Zhao J
    Opt Express; 2021 Nov; 29(23):37253-37261. PubMed ID: 34808802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Doppler-free three-photon coherence in Doppler-broadened diamond-type atomic system.
    Lee YS; Moon HS
    Opt Express; 2017 Mar; 25(5):5316-5326. PubMed ID: 28380794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atom-based vector microwave electrometry using rubidium Rydberg atoms in a vapor cell.
    Sedlacek JA; Schwettmann A; Kübler H; Shaffer JP
    Phys Rev Lett; 2013 Aug; 111(6):063001. PubMed ID: 23971570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rydberg atom electric field sensing for metrology, communication and hybrid quantum systems.
    Zhang H; Ma Y; Liao K; Yang W; Liu Z; Ding D; Yan H; Li W; Zhang L
    Sci Bull (Beijing); 2024 May; 69(10):1515-1535. PubMed ID: 38614855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced spectral profile in the study of Doppler-broadened Rydberg ensembles.
    Wu BH; Chuang YW; Chen YH; Yu JC; Chang MS; Yu IA
    Sci Rep; 2017 Aug; 7(1):9726. PubMed ID: 28852012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atom-based sensing technique of microwave electric and magnetic fields via a single rubidium vapor cell.
    Feng Z; Liu X; Zhang Y; Ruan W; Song Z; Qu J
    Opt Express; 2023 Jan; 31(2):1692-1704. PubMed ID: 36785199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic-field-induced splitting of Rydberg Electromagnetically Induced Transparency and Autler-Townes spectra in
    Li X; Cui Y; Hao J; Zhou F; Wang Y; Jia F; Zhang J; Xie F; Zhong Z
    Opt Express; 2023 Nov; 31(23):38165-38178. PubMed ID: 38017929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manipulation of single stored-photon with microwave field based on Rydberg polariton.
    Fan J; Zhang H; Jiao Y; Li C; Bai J; Wu J; Zhao J; Jia S
    Opt Express; 2023 Jun; 31(13):20641-20650. PubMed ID: 37381183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microwave-assisted Rydberg electromagnetically induced transparency.
    Vogt T; Gross C; Gallagher TF; Li W
    Opt Lett; 2018 Apr; 43(8):1822-1825. PubMed ID: 29652373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitivity enhancement of far-detuned RF field sensing based on Rydberg atoms dressed by a near-resonant RF field.
    Yao J; An Q; Zhou Y; Yang K; Wu F; Fu Y
    Opt Lett; 2022 Oct; 47(20):5256-5259. PubMed ID: 36240336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High sensitivity spectroscopy of cesium Rydberg atoms using electromagnetically induced transparency.
    Zhao J; Zhu X; Zhang L; Feng Z; Li C; Jia S
    Opt Express; 2009 Aug; 17(18):15821-6. PubMed ID: 19724582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical study of a four-level EIT-type system in the presence of structured coupling light for microwave field detection.
    Kumar R; Manchaiah D; Easwaran RK
    Appl Opt; 2022 Dec; 61(36):10681-10687. PubMed ID: 36606926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship between two- and three-photon coherence in a ladder-type atomic system.
    Lee YS; Noh HR; Moon HS
    Opt Express; 2015 Feb; 23(3):2999-3009. PubMed ID: 25836160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.