These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 37632316)
1. Molecular Diffusion in Nanoreactors' Pore Channel System: Measurement Techniques, Structural Regulation, and Catalytic Effects. Yan K; Lu X; Zhang R; Xiong J; Qiao Y; Li X; Yu Z Small; 2023 Dec; 19(50):e2304008. PubMed ID: 37632316 [TBL] [Abstract][Full Text] [Related]
2. Kinetics Driven by Hollow Nanoreactors: An Opportunity for Controllable Catalysis. Yu Z; Ji N; Li X; Zhang R; Qiao Y; Xiong J; Liu J; Lu X Angew Chem Int Ed Engl; 2023 Jan; 62(3):e202213612. PubMed ID: 36346146 [TBL] [Abstract][Full Text] [Related]
3. Ultrafine Ruthenium Clusters Shell-Embedded Hollow Carbon Spheres as Nanoreactors for Channel Microenvironment-Modulated Furfural Tandem Hydrogenation. Yu Z; Ji N; Xiong J; Han Y; Li X; Zhang R; Qiao Y; Zhang M; Lu X Small; 2022 Aug; 18(32):e2201361. PubMed ID: 35760757 [TBL] [Abstract][Full Text] [Related]
4. Hollow mesoporous aluminosilica spheres with perpendicular pore channels as catalytic nanoreactors. Fang X; Liu Z; Hsieh MF; Chen M; Liu P; Chen C; Zheng N ACS Nano; 2012 May; 6(5):4434-44. PubMed ID: 22502599 [TBL] [Abstract][Full Text] [Related]
5. Design of Hollow Nanoreactors for Size- and Shape-Selective Catalytic Semihydrogenation Driven by Molecular Recognition. Pi Y; Cui L; Luo W; Li H; Ma Y; Ta N; Wang X; Gao R; Wang D; Yang Q; Liu J Angew Chem Int Ed Engl; 2023 Oct; 62(43):e202307096. PubMed ID: 37394778 [TBL] [Abstract][Full Text] [Related]
6. Ruthenium-Nanoparticle-Loaded Hollow Carbon Spheres as Nanoreactors for Hydrogenation of Levulinic Acid: Explicitly Recognizing the Void-Confinement Effect. Yu Z; Ji N; Xiong J; Li X; Zhang R; Zhang L; Lu X Angew Chem Int Ed Engl; 2021 Sep; 60(38):20786-20794. PubMed ID: 34159675 [TBL] [Abstract][Full Text] [Related]
7. Nanoreactor-based catalytic systems for therapeutic applications: Principles, strategies, and challenges. Zhang D; Liu D; Wang C; Su Y; Zhang X Adv Colloid Interface Sci; 2023 Dec; 322():103037. PubMed ID: 37931381 [TBL] [Abstract][Full Text] [Related]
8. Photothermally Triggered Nanoreactors with a Tunable Catalyst Location and Catalytic Activity. Xu X; Sarhan RM; Mei S; Kochovski Z; Koopman W; Priestley RD; Lu Y ACS Appl Mater Interfaces; 2023 Oct; 15(41):48623-48631. PubMed ID: 37807243 [TBL] [Abstract][Full Text] [Related]
9. Hollow Nanoreactors Unlock New Possibilities for Persulfate-Based Advanced Oxidation Processes. Wang K; Wang R; Zhang S; Wang M; He Z; Chen H; Ho SH Small; 2024 Oct; 20(42):e2401796. PubMed ID: 38966879 [TBL] [Abstract][Full Text] [Related]
10. Hollow-shelled nanoreactors endowed with high catalytic activity. Pérez-Lorenzo M; Vaz B; Salgueiriño V; Correa-Duarte MA Chemistry; 2013 Sep; 19(37):12196-211. PubMed ID: 23946188 [TBL] [Abstract][Full Text] [Related]
11. Molecular transport in zeolite catalysts: depicting an integrated picture from macroscopic to microscopic scales. Liu X; Wang C; Zhou J; Liu C; Liu Z; Shi J; Wang Y; Teng J; Xie Z Chem Soc Rev; 2022 Oct; 51(19):8174-8200. PubMed ID: 36069165 [TBL] [Abstract][Full Text] [Related]
12. Block Copolymer Self-Assembly Directed Synthesis of Porous Materials with Ordered Bicontinuous Structures and Their Potential Applications. Xiang L; Li Q; Li C; Yang Q; Xu F; Mai Y Adv Mater; 2023 Feb; 35(5):e2207684. PubMed ID: 36255138 [TBL] [Abstract][Full Text] [Related]
13. Ultrasmall amphiphilic zeolitic nanoreactors for the aerobic oxidation of alcohols in water. Jing W; Li H; Xiao P; Liu B; Luo J; Wang R; Qiu S; Zhang Z Nanoscale; 2021 May; 13(20):9229-9235. PubMed ID: 33978033 [TBL] [Abstract][Full Text] [Related]
14. Hollow Nanoreactors for Controlled Photocatalytic Behaviors: Fundamental Theory, Structure-Performance Relationship, and Catalytic Advantages. Liu R; Yu Z; Zhang R; Xiong J; Qiao Y; Liu X; Lu X Small; 2024 Mar; 20(12):e2308142. PubMed ID: 37984879 [TBL] [Abstract][Full Text] [Related]
15. Core-Shell Palladium/MOF Platforms as Diffusion-Controlled Nanoreactors in Living Cells and Tissue Models. Martínez R; Carrillo-Carrión C; Destito P; Alvarez A; Tomás-Gamasa M; Pelaz B; Lopez F; Mascareñas JL; Del Pino P Cell Rep Phys Sci; 2020 Jun; 1(6):100076. PubMed ID: 32685935 [TBL] [Abstract][Full Text] [Related]
16. Emerging issues of connexin channels: biophysics fills the gap. Harris AL Q Rev Biophys; 2001 Aug; 34(3):325-472. PubMed ID: 11838236 [TBL] [Abstract][Full Text] [Related]
17. One-Step Construction of a Hollow Au@Bimetal-Organic Framework Core-Shell Catalytic Nanoreactor for Selective Alcohol Oxidation Reaction. Qin N; Pan A; Yuan J; Ke F; Wu X; Zhu J; Liu J; Zhu J ACS Appl Mater Interfaces; 2021 Mar; 13(10):12463-12471. PubMed ID: 33657796 [TBL] [Abstract][Full Text] [Related]
19. Preparation of Magnetic Tubular Nanoreactors for Highly Efficient Catalysis. Yang S; Peng L; Cao C; Wei F; Liu J; Zhu YN; Liu C; Wang X; Song W Chem Asian J; 2016 Oct; 11(19):2797-2801. PubMed ID: 27123561 [TBL] [Abstract][Full Text] [Related]
20. One-dimensional carbon based nanoreactor fabrication by electrospinning for sustainable catalysis. He F; Wang Y; Liu J; Yao X Exploration (Beijing); 2023 Jun; 3(3):20220164. PubMed ID: 37933386 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]