BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 37632319)

  • 1. Broadening the scope of WEE1 inhibitors: identifying novel drug candidates via computational approaches and drug repurposing.
    Chandrasekaran J; Sivakumaresan Y; Shankar K; Dickson M; Laya Saravana Kumar S; Ramanathan L; Ahmad I; Patel H
    J Biomol Struct Dyn; 2023 Aug; ():1-11. PubMed ID: 37632319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insightful t-SNE guided exploration spotlighting Palbociclib and Ribociclib analogues as novel WEE1 kinase inhibitory candidates.
    Muthuraj R; Gopal D; Ahmed I; Chandrasekaran J
    J Biomol Struct Dyn; 2024 Jan; ():1-13. PubMed ID: 38239070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pharmacophore modeling, multiple docking, and molecular dynamics studies on Wee1 kinase inhibitors.
    Hu Y; Zhou L; Zhu X; Dai D; Bao Y; Qiu Y
    J Biomol Struct Dyn; 2019 Jul; 37(10):2703-2715. PubMed ID: 30052133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) inhibitors: a novel approach in small molecule discovery.
    Devasahayam Arokia Balaya R; Chandrasekaran J; Kanekar S; Kumar Modi P; Dagamajalu S; Gopinathan K; Raju R; Prasad TSK
    J Biomol Struct Dyn; 2023; 41(24):15196-15206. PubMed ID: 37029757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational simulation studies on the binding selectivity of Wee1 and Checkpoint kinase 1 by molecular dynamics simulation combined with free energy calculations.
    Li Y; Liu X; Zhang S; Wang L; Zhang L; Zuo Z
    J Biomol Struct Dyn; 2022 Feb; 40(3):1172-1181. PubMed ID: 33016857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery of novel wee1 inhibitors via structure-based virtual screening and biological evaluation.
    Li Y; Pu Y; Liu H; Zhang L; Liu X; Li Y; Zuo Z
    J Comput Aided Mol Des; 2018 Sep; 32(9):901-915. PubMed ID: 30182144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. WEE1 inhibition by MK1775 as a single-agent therapy inhibits ovarian cancer viability.
    Zhang M; Dominguez D; Chen S; Fan J; Qin L; Long A; Li X; Zhang Y; Shi H; Zhang B
    Oncol Lett; 2017 Sep; 14(3):3580-3586. PubMed ID: 28927115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovery of potential WEE1 inhibitors via hybrid virtual screening.
    Jin T; Xu W; Chen R; Shen L; Gao J; Xu L; Chi X; Lin N; Zhou L; Shen Z; Zhang B
    Front Pharmacol; 2023; 14():1298245. PubMed ID: 38143493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MK1775, a selective Wee1 inhibitor, shows single-agent antitumor activity against sarcoma cells.
    Kreahling JM; Gemmer JY; Reed D; Letson D; Bui M; Altiok S
    Mol Cancer Ther; 2012 Jan; 11(1):174-82. PubMed ID: 22084170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting MUS81 promotes the anticancer effect of WEE1 inhibitor and immune checkpoint blocking combination therapy via activating cGAS/STING signaling in gastric cancer cells.
    Li C; Shen Q; Zhang P; Wang T; Liu W; Li R; Ma X; Zeng X; Yin Y; Tao K
    J Exp Clin Cancer Res; 2021 Oct; 40(1):315. PubMed ID: 34625086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibitors of cell cycle checkpoint target Wee1 kinase - a patent review (2003-2022).
    Yan J; Zhuang L; Wang Y; Jiang Y; Tu Z; Dong C; Chen Y; Zhu Y
    Expert Opin Ther Pat; 2022 Dec; 32(12):1217-1244. PubMed ID: 36620912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytokinetic effects of Wee1 disruption in pancreatic cancer.
    Chang Q; Chandrashekhar M; Ketela T; Fedyshyn Y; Moffat J; Hedley D
    Cell Cycle; 2016; 15(4):593-604. PubMed ID: 26890070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell cycle regulation by the Wee1 inhibitor PD0166285, pyrido [2,3-d] pyimidine, in the B16 mouse melanoma cell line.
    Hashimoto O; Shinkawa M; Torimura T; Nakamura T; Selvendiran K; Sakamoto M; Koga H; Ueno T; Sata M
    BMC Cancer; 2006 Dec; 6():292. PubMed ID: 17177986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. WEE1 kinase limits CDK activities to safeguard DNA replication and mitotic entry.
    Elbæk CR; Petrosius V; Sørensen CS
    Mutat Res; 2020; 819-820():111694. PubMed ID: 32120135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human Wee1 kinase inhibits cell division by phosphorylating p34cdc2 exclusively on Tyr15.
    McGowan CH; Russell P
    EMBO J; 1993 Jan; 12(1):75-85. PubMed ID: 8428596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping of the interaction sites between Wee1 kinase and the regulatory beta-subunit of protein kinase CK2.
    Olsen BB; Kreutzer JN; Watanabe N; Holm T; Guerra B
    Int J Oncol; 2010 May; 36(5):1175-82. PubMed ID: 20372791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two Distinct Cdc2 Pools Regulate Cell Cycle Progression and the DNA Damage Response in the Fission Yeast S.pombe.
    Caspari T; Hilditch V
    PLoS One; 2015; 10(7):e0130748. PubMed ID: 26131711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Tumor Suppressor MIG6 Controls Mitotic Progression and the G2/M DNA Damage Checkpoint by Stabilizing the WEE1 Kinase.
    Sasaki M; Terabayashi T; Weiss SM; Ferby I
    Cell Rep; 2018 Jul; 24(5):1278-1289. PubMed ID: 30067982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and energetic insights into the selective inhibition of PKMYT1 against WEE1.
    Qi X; Li G; Liu J; Mou L; Zhang Y; Guo S; Chen X; Li W
    J Biomol Struct Dyn; 2024 Apr; 42(6):3010-3018. PubMed ID: 37345529
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.