BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 37632699)

  • 1. Direct Experimental Observations of Ion Distributions during Overcharging at the Muscovite-Water Interface by Adsorption of Rb
    Neumann J; Lee SS; Zhao EJ; Fenter P
    Chemphyschem; 2023 Nov; 24(22):e202300545. PubMed ID: 37632699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ion correlations drive charge overscreening and heterogeneous nucleation at solid-aqueous electrolyte interfaces.
    Lee SS; Koishi A; Bourg IC; Fenter P
    Proc Natl Acad Sci U S A; 2021 Aug; 118(32):. PubMed ID: 34353907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct Experimental Observations of Ion Distributions during Overcharging at the Muscovite-Water Interface by Adsorption of Rb
    Neumann J; Lee SS; Zhao EJ; Fenter P
    Chemphyschem; 2023 Nov; 24(22):e202300742. PubMed ID: 37989712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trivalent ion overcharging on electrified graphene.
    Carr AJ; Lee SS; Uysal A
    J Phys Condens Matter; 2022 Jan; 34(14):. PubMed ID: 35016162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of interfacial ion structuring on range and magnitude of electric double layer, hydration, and adhesive interactions between mica surfaces in 0.05-3 M Li⁺ and Cs⁺ electrolyte solutions.
    Baimpos T; Shrestha BR; Raman S; Valtiner M
    Langmuir; 2014 Apr; 30(15):4322-32. PubMed ID: 24655312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monovalent ion adsorption at the muscovite (001)-solution interface: relationships among ion coverage and speciation, interfacial water structure, and substrate relaxation.
    Lee SS; Fenter P; Nagy KL; Sturchio NC
    Langmuir; 2012 Jun; 28(23):8637-50. PubMed ID: 22574993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrated cation speciation at the muscovite (001)-water interface.
    Lee SS; Fenter P; Park C; Sturchio NC; Nagy KL
    Langmuir; 2010 Nov; 26(22):16647-51. PubMed ID: 20932042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ion adsorption at the rutile-water interface: linking molecular and macroscopic properties.
    Zhang Z; Fenter P; Cheng L; Sturchio NC; Bedzyk MJ; Predota M; Bandura A; Kubicki JD; Lvov SN; Cummings PT; Chialvo AA; Ridley MK; Bénézeth P; Anovitz L; Palmer DA; Machesky ML; Wesolowski DJ
    Langmuir; 2004 Jun; 20(12):4954-69. PubMed ID: 15984256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A "counter-charge layer in generalized solvents" framework for electrical double layers in neat and hybrid ionic liquid electrolytes.
    Feng G; Huang J; Sumpter BG; Meunier V; Qiao R
    Phys Chem Chem Phys; 2011 Aug; 13(32):14723-34. PubMed ID: 21755079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Demystifying the Stern layer at a metal-electrolyte interface: Local dielectric constant, specific ion adsorption, and partial charge transfer.
    Wang X; Liu K; Wu J
    J Chem Phys; 2021 Mar; 154(12):124701. PubMed ID: 33810643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zn2+ and Sr2+ adsorption at the TiO2 (110)-electrolyte interface: influence of ionic strength, coverage, and anions.
    Zhang Z; Fenter P; Cheng L; Sturchio NC; Bedzyk MJ; Machesky ML; Anovitz LM; Wesolowski DJ
    J Colloid Interface Sci; 2006 Mar; 295(1):50-64. PubMed ID: 16150454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and dynamics of electrical double layers in organic electrolytes.
    Feng G; Huang J; Sumpter BG; Meunier V; Qiao R
    Phys Chem Chem Phys; 2010; 12(20):5468-79. PubMed ID: 20467670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Innermost Ion Association Configuration Is a Key Structural Descriptor of Ionic Liquids at Electrified Interfaces.
    Panse KS; Wu H; Zhou S; Zhao F; Aluru NR; Zhang Y
    J Phys Chem Lett; 2022 Oct; 13(40):9464-9472. PubMed ID: 36198103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamics, interfacial structure, and pH hysteresis of Rb+ and Sr2+ adsorption at the muscovite (001)-solution interface.
    Park C; Fenter PA; Sturchio NC; Nagy KL
    Langmuir; 2008 Dec; 24(24):13993-4004. PubMed ID: 19053665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution and Reversible Polarity of Multilayering at the Ionic Liquid/Water Interface.
    Katakura S; Amano KI; Sakka T; Bu W; Lin B; Schlossman ML; Nishi N
    J Phys Chem B; 2020 Jul; 124(29):6412-6419. PubMed ID: 32600035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ionic Layering and Overcharging in Electrical Double Layers in a Poisson-Boltzmann Model.
    Gupta A; Govind Rajan A; Carter EA; Stone HA
    Phys Rev Lett; 2020 Oct; 125(18):188004. PubMed ID: 33196271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rheology of the Electric Double Layer in Electrolyte Solutions.
    Funari R; Matsumoto A; de Bruyn JR; Shen AQ
    Anal Chem; 2020 Jun; 92(12):8244-8253. PubMed ID: 32419462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ions Tune Interfacial Water Structure and Modulate Hydrophobic Interactions at Silica Surfaces.
    Tuladhar A; Dewan S; Pezzotti S; Brigiano FS; Creazzo F; Gaigeot MP; Borguet E
    J Am Chem Soc; 2020 Apr; 142(15):6991-7000. PubMed ID: 32233477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time observation of cation exchange kinetics and dynamics at the muscovite-water interface.
    Lee SS; Fenter P; Nagy KL; Sturchio NC
    Nat Commun; 2017 Jun; 8():15826. PubMed ID: 28598428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The importance of ion size and electrode curvature on electrical double layers in ionic liquids.
    Feng G; Qiao R; Huang J; Dai S; Sumpter BG; Meunier V
    Phys Chem Chem Phys; 2011 Jan; 13(3):1152-61. PubMed ID: 21079823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.