These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 37633218)
1. Integrated analysis of transcriptome and proteome for exploring mechanism of promoting proliferation of equine satellite cells associated with leucine. Xing J; Xie L; Qi X; Liu G; Akhtar MF; Li X; Bou G; Bai D; Zhao Y; Dugarjaviin M; Zhang X Comp Biochem Physiol Part D Genomics Proteomics; 2023 Dec; 48():101118. PubMed ID: 37633218 [TBL] [Abstract][Full Text] [Related]
2. A Transcriptomic Regulatory Network among miRNAs, lncRNAs, circRNAs, and mRNAs Associated with L-leucine-induced Proliferation of Equine Satellite Cells. Xing J; Qi X; Liu G; Li X; Gao X; Bou G; Bai D; Zhao Y; Du M; Dugarjaviin M; Zhang X Animals (Basel); 2023 Jan; 13(2):. PubMed ID: 36670748 [TBL] [Abstract][Full Text] [Related]
3. Leucine promotes energy metabolism and stimulates slow-twitch muscle fibers expression through AMPK/mTOR signaling in equine skeletal muscle satellite cells. Xing J; Bou G; Liu G; Li X; Shen Y; Akhtar MF; Bai D; Zhao Y; Dugarjaviin M; Zhang X Comp Biochem Physiol Part D Genomics Proteomics; 2024 Sep; 51():101249. PubMed ID: 38776751 [TBL] [Abstract][Full Text] [Related]
4. Cultured equine satellite cells as a model system to assess leucine stimulated protein synthesis in horse muscle. DeBoer ML; Martinson KM; Pampusch MS; Hansen AM; Wells SM; Ward C; Hathaway M J Anim Sci; 2018 Feb; 96(1):143-153. PubMed ID: 29444251 [TBL] [Abstract][Full Text] [Related]
6. The initial delay to mitotic activity in primary cultures of equine satellite cells is reduced by combinations of growth factors. Barshick MR; Gonzalez ML; Busse NI; Helsel PJ; Johnson SE J Anim Sci; 2022 Aug; 100(8):. PubMed ID: 35908788 [TBL] [Abstract][Full Text] [Related]
8. Regulation of the expression of key signalling molecules in mTOR pathway of skeletal muscle satellite cells in neonatal chicks: Effects of leucine and glycine-leucine peptide. She Y; Deng H; Cai H; Liu G J Anim Physiol Anim Nutr (Berl); 2019 May; 103(3):786-790. PubMed ID: 30900779 [TBL] [Abstract][Full Text] [Related]
9. Proteome and transcriptome profiling of equine myofibrillar myopathy identifies diminished peroxiredoxin 6 and altered cysteine metabolic pathways. Valberg SJ; Perumbakkam S; McKenzie EC; Finno CJ Physiol Genomics; 2018 Dec; 50(12):1036-1050. PubMed ID: 30289745 [TBL] [Abstract][Full Text] [Related]
10. The Effects of Leucine-Enriched Branched-Chain Amino Acid Supplementation on Recovery After High-Intensity Resistance Exercise. Osmond AD; Directo DJ; Elam ML; Juache G; Kreipke VC; Saralegui DE; Wildman R; Wong M; Jo E Int J Sports Physiol Perform; 2019 Sep; 14(8):1081-1088. PubMed ID: 31172828 [TBL] [Abstract][Full Text] [Related]
11. Integrated Analyses Reveal Overexpressed Notch1 Promoting Porcine Satellite Cells' Proliferation through Regulating the Cell Cycle. Jiao Y; Huang B; Chen Y; Hong G; Xu J; Hu C; Wang C Int J Mol Sci; 2018 Jan; 19(1):. PubMed ID: 29337929 [TBL] [Abstract][Full Text] [Related]
12. Metformin and leucine increase satellite cells and collagen remodeling during disuse and recovery in aged muscle. Petrocelli JJ; Mahmassani ZS; Fix DK; Montgomery JA; Reidy PT; McKenzie AI; de Hart NM; Ferrara PJ; Kelley JJ; Eshima H; Funai K; Drummond MJ FASEB J; 2021 Sep; 35(9):e21862. PubMed ID: 34416035 [TBL] [Abstract][Full Text] [Related]
13. Asparagine synthetase regulates the proliferation and differentiation of chicken skeletal muscle satellite cells. Jin H; Wang H; Wu J; Hu M; Zhou X; Yang S; Zhao A; He K Anim Biosci; 2024 Nov; 37(11):1848-1862. PubMed ID: 39210809 [TBL] [Abstract][Full Text] [Related]
14. Hepatic transcriptome and proteome analyses provide new insights into the regulator mechanism of dietary avicularin in diabetic mice. Zhu X; Qiu Z; Ouyang W; Miao J; Xiong P; Mao D; Feng K; Li M; Luo M; Xiao H; Cao Y Food Res Int; 2019 Nov; 125():108570. PubMed ID: 31554135 [TBL] [Abstract][Full Text] [Related]
15. Investigating age-related differences in muscles of Kazakh horse through transcriptome analysis. Ren W; Wang J; Zeng Y; Wang T; Sun Z; Meng J; Yao X Gene; 2024 Aug; 919():148483. PubMed ID: 38670391 [TBL] [Abstract][Full Text] [Related]
16. Integrated analysis of transcriptome and proteome to explore the genes related to steroid-induced femoral head necrosis. Yang N; Wang H; Zhang W; Sun H; Li M; Xu Y; Huang L; Geng D Exp Cell Res; 2021 Apr; 401(1):112513. PubMed ID: 33567325 [TBL] [Abstract][Full Text] [Related]
17. Whole transcriptome analyses of six thoroughbred horses before and after exercise using RNA-Seq. Park KD; Park J; Ko J; Kim BC; Kim HS; Ahn K; Do KT; Choi H; Kim HM; Song S; Lee S; Jho S; Kong HS; Yang YM; Jhun BH; Kim C; Kim TH; Hwang S; Bhak J; Lee HK; Cho BW BMC Genomics; 2012 Sep; 13():473. PubMed ID: 22971240 [TBL] [Abstract][Full Text] [Related]
18. Comparative Transcriptome Combined with Proteome Analyses Revealed Key Factors Involved in Alfalfa ( Zeng N; Yang Z; Zhang Z; Hu L; Chen L Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30889856 [TBL] [Abstract][Full Text] [Related]
19. Expression profiling and functional characterization of miR-192 throughout sheep skeletal muscle development. Zhao Q; Kang Y; Wang HY; Guan WJ; Li XC; Jiang L; He XH; Pu YB; Han JL; Ma YH; Zhao QJ Sci Rep; 2016 Jul; 6():30281. PubMed ID: 27452271 [TBL] [Abstract][Full Text] [Related]
20. Combined transcriptome and proteome analysis of yak PASMCs under hypoxic and normoxic conditions. Zhang L; Zhang Y; Zhou J; Yao Y; Li R; Zhou M; Chen S; Qiao Z; Yang K PeerJ; 2022; 10():e14369. PubMed ID: 36452079 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]