These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 37633987)

  • 1. Machine learning models for efficient characterization of Schottky barrier photodiode internal parameters.
    Ocaya RO; Akinyelu AA; Al-Sehemi AG; Dere A; Al-Ghamdi AA; Yakuphanoğlu F
    Sci Rep; 2023 Aug; 13(1):13990. PubMed ID: 37633987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced Thermionic Emission and Low 1/f Noise in Exfoliated Graphene/GaN Schottky Barrier Diode.
    Kumar A; Kashid R; Ghosh A; Kumar V; Singh R
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):8213-23. PubMed ID: 26963627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning approach for predicting electrical features of Schottky structures with graphene and ZnTiO
    Barkhordari A; Mashayekhi HR; Amiri P; Özçelik S; Altındal Ş; Azizian-Kalandaragh Y
    Sci Rep; 2023 Aug; 13(1):13685. PubMed ID: 37607982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-Power Graphene/ZnO Schottky UV Photodiodes with Enhanced Lateral Schottky Barrier Homogeneity.
    Lee Y; Kim DY; Lee S
    Nanomaterials (Basel); 2019 May; 9(5):. PubMed ID: 31137675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of the interfaces in Schottky diodes using equivalent circuit models.
    Yim C; McEvoy N; Kim HY; Rezvani E; Duesberg GS
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):6951-8. PubMed ID: 23767937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Electrical and Photodetector Characteristics of the Graphene:PVA/p-Si Schottky Structures Depending on Illumination Intensities.
    Ulusoy M; Koçyiğit S; Tataroğlu A; Altındal Yerişkin S
    ACS Omega; 2024 Jul; 9(29):32243-32255. PubMed ID: 39072130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical Properties of Laser Patterned Schottky Diode with ALD-Grown TiO
    Dikicioǧlu E; Balı MB; Saǧlam S; Berberoǧlu H; Pavlov I; Goodarzi A; Orhan E
    ACS Omega; 2024 May; 9(19):21346-21352. PubMed ID: 38764680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monolayer graphene/SiC Schottky barrier diodes with improved barrier height uniformity as a sensing platform for the detection of heavy metals.
    Shtepliuk I; Eriksson J; Khranovskyy V; Iakimov T; Lloyd Spetz A; Yakimova R
    Beilstein J Nanotechnol; 2016; 7():1800-1814. PubMed ID: 28144530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic Properties of DNA-Based Schottky Barrier Diodes in Response to Alpha Particles.
    Al-Ta'ii HM; Periasamy V; Amin YM
    Sensors (Basel); 2015 May; 15(5):11836-53. PubMed ID: 26007733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of Ga
    Jiao T; Chen W; Li Z; Diao Z; Dang X; Chen P; Dong X; Zhang Y; Zhang B
    Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36499777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physical Operations of a Self-Powered IZTO/β-Ga
    Labed M; Kim H; Park JH; Labed M; Meftah A; Sengouga N; Rim YS
    Nanomaterials (Basel); 2022 Mar; 12(7):. PubMed ID: 35407179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Schottky barrier inhomogeneities at the interface of different epitaxial layer thicknesses of
    Al-Ahmadi NA
    Heliyon; 2020 Sep; 6(9):e04852. PubMed ID: 32995595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of Thickness Dependence of Metal Layer in Al/Mo/4H-SiC Schottky Barrier Diodes.
    Lee S; Lee J; Kang TY; Kyoung S; Jung ES; Kim KH
    J Nanosci Nanotechnol; 2015 Nov; 15(11):9308-13. PubMed ID: 26726688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Performance Temperature Sensors Based on Dual 4H-SiC JBS and SBD Devices.
    Min SJ; Shin MC; Thi Nguyen N; Oh JM; Koo SM
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31963426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of Surface States in Graphene/
    Maccagnani P; Pieruccini M
    Materials (Basel); 2024 Apr; 17(9):. PubMed ID: 38730804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrical characterization of two analogous Schottky contacts produced from N-substituted 1,8-naphthalimide.
    Karagöz E; Fiat Varol S; Sayın S; Merdan Z
    Phys Chem Chem Phys; 2018 Dec; 20(48):30502-30513. PubMed ID: 30511079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic Transport Mechanism for Schottky Diodes Formed by Au/HVPE a-Plane GaN Templates Grown via In Situ GaN Nanodot Formation.
    Lee M; Vu TKO; Lee KS; Kim EK; Park S
    Nanomaterials (Basel); 2018 Jun; 8(6):. PubMed ID: 29865230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and Modelling of Gallium Nitride Based Lateral Schottky Barrier Diodes with Anode Recesses for mmWave and THz Applications.
    Alathbah M
    Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High performance broadband bismuth telluride tetradymite topological insulator photodiode.
    Parbatani A; Song ES; Claypoole J; Yu B
    Nanotechnology; 2019 Apr; 30(16):165201. PubMed ID: 30620938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Minimizing Trap Charge Density towards an Ideal Diode in Graphene-Silicon Schottky Solar Cell.
    Adhikari S; Biswas C; Doan MH; Kim ST; Kulshreshtha C; Lee YH
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):880-888. PubMed ID: 30560653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.