These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 37634046)

  • 1. Exchange interaction for the triplet superconductor UTe
    Yang CK; Lee CH
    Sci Rep; 2023 Aug; 13(1):13995. PubMed ID: 37634046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resonance from antiferromagnetic spin fluctuations for superconductivity in UTe
    Duan C; Baumbach RE; Podlesnyak A; Deng Y; Moir C; Breindel AJ; Maple MB; Nica EM; Si Q; Dai P
    Nature; 2021 Dec; 600(7890):636-640. PubMed ID: 34937893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Signature of magnetic-dependent gapless odd frequency states at superconductor/ferromagnet interfaces.
    Di Bernardo A; Diesch S; Gu Y; Linder J; Divitini G; Ducati C; Scheer E; Blamire MG; Robinson JWA
    Nat Commun; 2015 Sep; 6():8053. PubMed ID: 26329811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superconductivity in an electron band just above the Fermi level: possible route to BCS-BEC superconductivity.
    Okazaki K; Ito Y; Ota Y; Kotani Y; Shimojima T; Kiss T; Watanabe S; Chen CT; Niitaka S; Hanaguri T; Takagi H; Chainani A; Shin S
    Sci Rep; 2014 Feb; 4():4109. PubMed ID: 24576851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic-field-sensitive charge density waves in the superconductor UTe
    Aishwarya A; May-Mann J; Raghavan A; Nie L; Romanelli M; Ran S; Saha SR; Paglione J; Butch NP; Fradkin E; Madhavan V
    Nature; 2023 Jun; 618(7967):928-933. PubMed ID: 37380690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chiral superconductivity in heavy-fermion metal UTe
    Jiao L; Howard S; Ran S; Wang Z; Rodriguez JO; Sigrist M; Wang Z; Butch NP; Madhavan V
    Nature; 2020 Mar; 579(7800):523-527. PubMed ID: 32214254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for a pressure-induced antiferromagnetic quantum critical point in intermediate-valence UTe
    Thomas SM; Santos FB; Christensen MH; Asaba T; Ronning F; Thompson JD; Bauer ED; Fernandes RM; Fabbris G; Rosa PFS
    Sci Adv; 2020 Oct; 6(42):. PubMed ID: 33055167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unconventional superconductivity in UTe
    Aoki D; Brison JP; Flouquet J; Ishida K; Knebel G; Tokunaga Y; Yanase Y
    J Phys Condens Matter; 2022 Apr; 34(24):. PubMed ID: 35203074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An unusual continuous paramagnetic-limited superconducting phase transition in 2D NbSe
    Sohn E; Xi X; He WY; Jiang S; Wang Z; Kang K; Park JH; Berger H; Forró L; Law KT; Shan J; Mak KF
    Nat Mater; 2018 Jun; 17(6):504-508. PubMed ID: 29713039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrathin Bismuth Film on High-Temperature Cuprate Superconductor Bi
    Shimamura N; Sugawara K; Sucharitakul S; Souma S; Iwaya K; Nakayama K; Trang CX; Yamauchi K; Oguchi T; Kudo K; Noji T; Koike Y; Takahashi T; Hanaguri T; Sato T
    ACS Nano; 2018 Nov; 12(11):10977-10983. PubMed ID: 30335952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-temperature crystal structure of the unconventional spin-triplet superconductor UTe
    Hutanu V; Deng H; Ran S; Fuhrman WT; Thoma H; Butch NP
    Acta Crystallogr B Struct Sci Cryst Eng Mater; 2020 Feb; 76(Pt 1):137-143. PubMed ID: 32831248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhomogeneous high temperature melting and decoupling of charge density waves in spin-triplet superconductor UTe
    LaFleur A; Li H; Frank CE; Xu M; Cheng S; Wang Z; Butch NP; Zeljkovic I
    Nat Commun; 2024 May; 15(1):4456. PubMed ID: 38796494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The possibility of a liquid superconductor.
    Edwards PP; Rao CN; Kumar N; Alexandrov AS
    Chemphyschem; 2006 Sep; 7(9):2015-21. PubMed ID: 16892477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The origin of multiple superconducting gaps in MgB2.
    Souma S; Machida Y; Sato T; Takahashi T; Matsui H; Wang SC; Ding H; Kaminski A; Campuzano JC; Sasaki S; Kadowaki K
    Nature; 2003 May; 423(6935):65-7. PubMed ID: 12721624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stability and superconductivity of Ca-intercalated bilayer blue phosphorene.
    Durajski AP; Skoczylas KM; Szczęśniak R
    Phys Chem Chem Phys; 2021 Feb; 23(4):2846-2852. PubMed ID: 33470999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coexistence of superconductivity and ferromagnetism in the d-band metal ZrZn2.
    Pfleiderer C; Uhlarz M; Hayden SM; Vollmer R; v Löhneysen H; Bernhoeft NR; Lonzarich GG
    Nature; 2001 Jul; 412(6842):58-61. PubMed ID: 11452303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chiral superconductivity in UTe
    Ishihara K; Roppongi M; Kobayashi M; Imamura K; Mizukami Y; Sakai H; Opletal P; Tokiwa Y; Haga Y; Hashimoto K; Shibauchi T
    Nat Commun; 2023 May; 14(1):2966. PubMed ID: 37221184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observation of Cooper pairs in a mesoscopic two-dimensional Fermi gas.
    Holten M; Bayha L; Subramanian K; Brandstetter S; Heintze C; Lunt P; Preiss PM; Jochim S
    Nature; 2022 Jun; 606(7913):287-291. PubMed ID: 35676427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system.
    Drozdov AP; Eremets MI; Troyan IA; Ksenofontov V; Shylin SI
    Nature; 2015 Sep; 525(7567):73-6. PubMed ID: 26280333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nearly ferromagnetic spin-triplet superconductivity.
    Ran S; Eckberg C; Ding QP; Furukawa Y; Metz T; Saha SR; Liu IL; Zic M; Kim H; Paglione J; Butch NP
    Science; 2019 Aug; 365(6454):684-687. PubMed ID: 31416960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.