These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

551 related articles for article (PubMed ID: 37634556)

  • 1. A functional account of stimulation-based aerobic glycolysis and its role in interpreting BOLD signal intensity increases in neuroimaging experiments.
    Theriault JE; Shaffer C; Dienel GA; Sander CY; Hooker JM; Dickerson BC; Barrett LF; Quigley KS
    Neurosci Biobehav Rev; 2023 Oct; 153():105373. PubMed ID: 37634556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aggression is associated with aerobic glycolysis in the honey bee brain(1).
    Chandrasekaran S; Rittschof CC; Djukovic D; Gu H; Raftery D; Price ND; Robinson GE
    Genes Brain Behav; 2015 Feb; 14(2):158-66. PubMed ID: 25640316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. K(ATP)-channel activation: effects on myocardial recovery from ischaemia and role in the cardioprotective response to adenosine A1-receptor stimulation.
    Ford WR; Lopaschuk GD; Schulz R; Clanachan AS
    Br J Pharmacol; 1998 Jun; 124(4):639-46. PubMed ID: 9690854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aerobic Glycolysis: A DeOxymoron of (Neuro)Biology.
    Schurr A; Passarella S
    Metabolites; 2022 Jan; 12(1):. PubMed ID: 35050194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catabolic efficiency of aerobic glycolysis: the Warburg effect revisited.
    Vazquez A; Liu J; Zhou Y; Oltvai ZN
    BMC Syst Biol; 2010 May; 4():58. PubMed ID: 20459610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uniform distributions of glucose oxidation and oxygen extraction in gray matter of normal human brain: No evidence of regional differences of aerobic glycolysis.
    Hyder F; Herman P; Bailey CJ; Møller A; Globinsky R; Fulbright RK; Rothman DL; Gjedde A
    J Cereb Blood Flow Metab; 2016 May; 36(5):903-16. PubMed ID: 26755443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aerobic glycolysis during brain activation: adrenergic regulation and influence of norepinephrine on astrocytic metabolism.
    Dienel GA; Cruz NF
    J Neurochem; 2016 Jul; 138(1):14-52. PubMed ID: 27166428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic underpinnings of activated and deactivated cortical areas in human brain.
    Koush Y; de Graaf RA; Kupers R; Dricot L; Ptito M; Behar KL; Rothman DL; Hyder F
    J Cereb Blood Flow Metab; 2021 May; 41(5):986-1000. PubMed ID: 33472521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The cellular and compartmental profile of mouse retinal glycolysis, tricarboxylic acid cycle, oxidative phosphorylation, and ~P transferring kinases.
    Rueda EM; Johnson JE; Giddabasappa A; Swaroop A; Brooks MJ; Sigel I; Chaney SY; Fox DA
    Mol Vis; 2016; 22():847-85. PubMed ID: 27499608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regional aerobic glycolysis in the human brain.
    Vaishnavi SN; Vlassenko AG; Rundle MM; Snyder AZ; Mintun MA; Raichle ME
    Proc Natl Acad Sci U S A; 2010 Oct; 107(41):17757-62. PubMed ID: 20837536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of aerobic glycolysis in the brain in vitro.
    Benjamin AM; Verjee ZH
    Neurochem Res; 1980 Sep; 5(9):921-34. PubMed ID: 7207696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy metabolism in human retinal Müller cells.
    Winkler BS; Arnold MJ; Brassell MA; Puro DG
    Invest Ophthalmol Vis Sci; 2000 Sep; 41(10):3183-90. PubMed ID: 10967082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial ATP generation is more proteome efficient than glycolysis.
    Shen Y; Dinh HV; Cruz ER; Chen Z; Bartman CR; Xiao T; Call CM; Ryseck RP; Pratas J; Weilandt D; Baron H; Subramanian A; Fatma Z; Wu ZY; Dwaraknath S; Hendry JI; Tran VG; Yang L; Yoshikuni Y; Zhao H; Maranas CD; Wühr M; Rabinowitz JD
    Nat Chem Biol; 2024 Sep; 20(9):1123-1132. PubMed ID: 38448734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neurovascular coupling is optimized to compensate for the increase in proton production from nonoxidative glycolysis and glycogenolysis during brain activation and maintain homeostasis of pH, pCO
    DiNuzzo M; Dienel GA; Behar KL; Petroff OA; Benveniste H; Hyder F; Giove F; Michaeli S; Mangia S; Herculano-Houzel S; Rothman DL
    J Neurochem; 2024 May; 168(5):632-662. PubMed ID: 37150946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aerobic Glycolysis in the Brain: Warburg and Crabtree Contra Pasteur.
    Barros LF; Ruminot I; San Martín A; Lerchundi R; Fernández-Moncada I; Baeza-Lehnert F
    Neurochem Res; 2021 Jan; 46(1):15-22. PubMed ID: 31981059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Separation of metabolic supply and demand: aerobic glycolysis as a normal physiological response to fluctuating energetic demands in the membrane.
    Epstein T; Xu L; Gillies RJ; Gatenby RA
    Cancer Metab; 2014; 2():7. PubMed ID: 24982758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aerobic glycolysis in the primate brain: reconsidering the implications for growth and maintenance.
    Bauernfeind AL; Barks SK; Duka T; Grossman LI; Hof PR; Sherwood CC
    Brain Struct Funct; 2014 Jul; 219(4):1149-67. PubMed ID: 24185460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glucose dependence of glycolysis, hexose monophosphate shunt activity, energy status, and the polyol pathway in retinas isolated from normal (nondiabetic) rats.
    Winkler BS; Arnold MJ; Brassell MA; Sliter DR
    Invest Ophthalmol Vis Sci; 1997 Jan; 38(1):62-71. PubMed ID: 9008631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The appropriation of glucose through primate neurodevelopment.
    Bauernfeind AL; Babbitt CC
    J Hum Evol; 2014 Dec; 77():132-40. PubMed ID: 25110208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensory neurons derived from diabetic rats exhibit deficits in functional glycolysis and ATP that are ameliorated by IGF-1.
    Aghanoori MR; Margulets V; Smith DR; Kirshenbaum LA; Gitler D; Fernyhough P
    Mol Metab; 2021 Jul; 49():101191. PubMed ID: 33592336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.