BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 37634583)

  • 21. Degradation of benzo [a] pyrene in the soil enhanced by soapwort: The role of soapwort and functional microbial community.
    Yao D; Wang N; Dai W; Liu Y; Tian K; Wang H; Liu Y
    J Hazard Mater; 2023 Sep; 458():131993. PubMed ID: 37423134
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Two-liquid-phase system: A promising technique for predicting bioavailability of polycyclic aromatic hydrocarbons in long-term contaminated soils.
    Wang C; Wang Z; Li Z; Ahmad R
    Chemosphere; 2017 Feb; 169():685-692. PubMed ID: 27914353
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanisms of benzene and benzo[a]pyrene biodegradation in the individually and mixed contaminated soils.
    Ali M; Wang Q; Zhang Z; Chen X; Ma M; Tang Z; Li R; Tang B; Li Z; Huang X; Song X
    Environ Pollut; 2024 Apr; 347():123710. PubMed ID: 38458518
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Construction of PAH-degrading mixed microbial consortia by induced selection in soil.
    Zafra G; Absalón ÁE; Anducho-Reyes MÁ; Fernandez FJ; Cortés-Espinosa DV
    Chemosphere; 2017 Apr; 172():120-126. PubMed ID: 28063314
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of different carbon substrates on PAHs fractions and microbial community changes in PAHs-contaminated soils.
    Wang J; Zhang H; Cai J; Li J; Sun B; Wu F
    Environ Pollut; 2023 May; 324():121367. PubMed ID: 36858100
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Degradation of PAHs in soil by Lasiodiplodia theobromae and enhanced benzo[a]pyrene degradation by the addition of Tween-80.
    Wang C; Liu H; Li J; Sun H
    Environ Sci Pollut Res Int; 2014 Sep; 21(18):10614-25. PubMed ID: 24878554
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A PAH-degrading bacterial community enriched with contaminated agricultural soil and its utility for microbial bioremediation.
    Lu C; Hong Y; Liu J; Gao Y; Ma Z; Yang B; Ling W; Waigi MG
    Environ Pollut; 2019 Aug; 251():773-782. PubMed ID: 31121542
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Efficient bioremediation of PAHs-contaminated soils by a methylotrophic enrichment culture.
    Dhar K; Panneerselvan L; Venkateswarlu K; Megharaj M
    Biodegradation; 2022 Dec; 33(6):575-591. PubMed ID: 35976498
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Detection of functional microorganisms in benzene [a] pyrene-contaminated soils using DNA-SIP technology.
    Wang B; Teng Y; Yao H; Christie P
    J Hazard Mater; 2021 Apr; 407():124788. PubMed ID: 33321373
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of Comamonas testosteroni on dissipation of polycyclic aromatic hydrocarbons and the response of endogenous bacteria for soil bioremediation.
    Lu Q; Sun X; Jiang Z; Cui Y; Li X; Cui J
    Environ Sci Pollut Res Int; 2022 Nov; 29(54):82351-82364. PubMed ID: 35750914
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimization of hydrogen peroxide-to-hemoglobin ratio for biocatalytic mineralization of polycyclic aromatic hydrocarbons (PAHs)-contaminated soils.
    Keum H; Kang G; Jho EH
    Chemosphere; 2017 Nov; 187():206-211. PubMed ID: 28850906
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bioremediation of PAH-contaminated farmland: field experiment.
    Ma L; Deng F; Yang C; Guo C; Dang Z
    Environ Sci Pollut Res Int; 2018 Jan; 25(1):64-72. PubMed ID: 27838911
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Response of soil bacterial communities to polycyclic aromatic hydrocarbons during the phyto-microbial remediation of a contaminated soil.
    Miao R; Guo M; Zhao X; Gong Z; Jia C; Li X; Zhuang J
    Chemosphere; 2020 Dec; 261():127779. PubMed ID: 32736249
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of rhamnolipid biosurfactant and Brij-35 synthetic surfactant on
    Wolf DC; Gan J
    Environ Pollut; 2018 Dec; 243(Pt B):1846-1853. PubMed ID: 30408872
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biodegradation of polycyclic aromatic hydrocarbons: Using microbial bioelectrochemical systems to overcome an impasse.
    Kronenberg M; Trably E; Bernet N; Patureau D
    Environ Pollut; 2017 Dec; 231(Pt 1):509-523. PubMed ID: 28841503
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced Bioremediation of Aged Polycyclic Aromatic Hydrocarbons in Soil Using Immobilized Microbial Consortia Combined with Strengthening Remediation Strategies.
    Zhou H; Gao X; Wang S; Zhang Y; Coulon F; Cai C
    Int J Environ Res Public Health; 2023 Jan; 20(3):. PubMed ID: 36767132
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nitrogen addition enhanced the polycyclic aromatic hydrocarbons dissipation through increasing the abundance of related degrading genes in the soils.
    Wang J; Yang Z; Zhou X; Waigi MG; Gudda FO; Odinga ES; Mosa A; Ling W
    J Hazard Mater; 2022 Aug; 435():129034. PubMed ID: 35525013
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Isolation and characterization of heavy polycyclic aromatic hydrocarbon-degrading bacteria adapted to electrokinetic conditions.
    Li F; Guo S; Hartog N; Yuan Y; Yang X
    Biodegradation; 2016 Feb; 27(1):1-13. PubMed ID: 26615425
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of electrokinetic operation mode on removal of polycyclic aromatic hydrocarbons (PAHs), and the indigenous fungal community in PAH-contaminated soil.
    Wang J; Li F; Li X; Wang X; Li X; Su Z; Zhang H; Guo S
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(13):1677-84. PubMed ID: 23947706
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bioremediation of polycyclic aromatic hydrocarbons contaminated soil with Monilinia sp.: degradation and microbial community analysis.
    Wu Y; Luo Y; Zou D; Ni J; Liu W; Teng Y; Li Z
    Biodegradation; 2008 Apr; 19(2):247-57. PubMed ID: 17541708
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.