These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 37635074)

  • 1. Substituent Dependence on the Reactions of Criegee Intermediates with Carbon Dioxide and Carbon Monoxide.
    Takahashi K
    Chempluschem; 2023 Sep; 88(9):e202300354. PubMed ID: 37635074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substituent Effect in the Reactions between Criegee Intermediates and 3-Aminopropanol.
    Kuo MT; Yang JN; Lin JJ; Takahashi K
    J Phys Chem A; 2021 Aug; 125(30):6580-6590. PubMed ID: 34314585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surprising Stability of Larger Criegee Intermediates on Aqueous Interfaces.
    Zhong J; Kumar M; Zhu CQ; Francisco JS; Zeng XC
    Angew Chem Int Ed Engl; 2017 Jun; 56(27):7740-7744. PubMed ID: 28471069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calculation of the absolute photoionization cross-sections for C1-C4 Criegee intermediates and vinyl hydroperoxides.
    Huang C; Yang B; Zhang F
    J Chem Phys; 2019 Apr; 150(16):164305. PubMed ID: 31042918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Infrared characterization of formation and resonance stabilization of the Criegee intermediate methyl vinyl ketone oxide.
    Chung CA; Lee YP
    Commun Chem; 2021 Jan; 4(1):8. PubMed ID: 36697539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How does substitution affect the unimolecular reaction rates of Criegee intermediates?
    Yin C; Takahashi K
    Phys Chem Chem Phys; 2017 May; 19(19):12075-12084. PubMed ID: 28443920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reaction Kinetics of Criegee Intermediates with Nitric Acid.
    Yang JN; Takahashi K; Lin JJ
    J Phys Chem A; 2022 Sep; 126(36):6160-6170. PubMed ID: 36044562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unimolecular Decay of Criegee Intermediates to OH Radical Products: Prompt and Thermal Decay Processes.
    Lester MI; Klippenstein SJ
    Acc Chem Res; 2018 Apr; 51(4):978-985. PubMed ID: 29613756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactivity of Criegee Intermediates toward Carbon Dioxide.
    Lin YH; Takahashi K; Lin JJ
    J Phys Chem Lett; 2018 Jan; 9(1):184-188. PubMed ID: 29254332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surprisingly long lifetime of methacrolein oxide, an isoprene derived Criegee intermediate, under humid conditions.
    Lin YH; Yin C; Takahashi K; Lin JJ
    Commun Chem; 2021 Feb; 4(1):12. PubMed ID: 36697547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unimolecular Reactions of
    Sun Y; Long B; Truhlar DG
    Research (Wash D C); 2023; 6():0143. PubMed ID: 37435010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substituent Effects on the Electronic Spectroscopy of Four-Carbon Criegee Intermediates.
    Liu T; Zou M; Caracciolo A; Sojdak CA; Lester MI
    J Phys Chem A; 2022 Sep; 126(38):6734-6741. PubMed ID: 36108247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical study on the formation of Criegee intermediates from ozonolysis of pentenal: An example of trans-2-pentenal.
    Xiao W; Sun S; Yan S; Wu W; Sun J
    Chemosphere; 2022 Sep; 303(Pt 3):135142. PubMed ID: 35636604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct kinetic measurements and theoretical predictions of an isoprene-derived Criegee intermediate.
    Caravan RL; Vansco MF; Au K; Khan MAH; Li YL; Winiberg FAF; Zuraski K; Lin YH; Chao W; Trongsiriwat N; Walsh PJ; Osborn DL; Percival CJ; Lin JJ; Shallcross DE; Sheps L; Klippenstein SJ; Taatjes CA; Lester MI
    Proc Natl Acad Sci U S A; 2020 May; 117(18):9733-9740. PubMed ID: 32321826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational studies of the isomerization and hydration reactions of acetaldehyde oxide and methyl vinyl carbonyl oxide.
    Kuwata KT; Hermes MR; Carlson MJ; Zogg CK
    J Phys Chem A; 2010 Sep; 114(34):9192-204. PubMed ID: 20701322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Criegee intermediate reaction with CO: mechanism, barriers, conformer-dependence, and implications for ozonolysis chemistry.
    Kumar M; Busch DH; Subramaniam B; Thompson WH
    J Phys Chem A; 2014 Mar; 118(10):1887-94. PubMed ID: 24527836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of the iodine-atom adduct in the synthesis and kinetics of methyl vinyl ketone oxide-a resonance-stabilized Criegee intermediate.
    Lin YH; Li YL; Chao W; Takahashi K; Lin JJ
    Phys Chem Chem Phys; 2020 Jun; 22(24):13603-13612. PubMed ID: 32515446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rate coefficients of C(1) and C(2) Criegee intermediate reactions with formic and acetic Acid near the collision limit: direct kinetics measurements and atmospheric implications.
    Welz O; Eskola AJ; Sheps L; Rotavera B; Savee JD; Scheer AM; Osborn DL; Lowe D; Murray Booth A; Xiao P; Anwar H Khan M; Percival CJ; Shallcross DE; Taatjes CA
    Angew Chem Int Ed Engl; 2014 Apr; 53(18):4547-50. PubMed ID: 24668781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic Absorption Spectroscopy and Photochemistry of Criegee Intermediates.
    Karsili TNV; Marchetti B; Lester MI; Ashfold MNR
    Photochem Photobiol; 2023 Jan; 99(1):4-18. PubMed ID: 35713380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of unsaturated substituents in the reaction of Criegee intermediates with water vapor.
    Yin C; Takahashi K
    Phys Chem Chem Phys; 2018 Aug; 20(30):20217-20227. PubMed ID: 30027942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.