These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 37635089)

  • 1. Post-Synthetic Nucleobase Modification of Oligodeoxynucleotides by Sonogashira Coupling and Influence of Alkynyl Modifications on the Duplex-Forming Ability.
    Mikami A; Mori S; Osawa T; Obika S
    Chemistry; 2023 Nov; 29(63):e202301928. PubMed ID: 37635089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of Nucleobase-Modified Oligonucleotides by Post-Synthetic Modification in Solution.
    Ito Y; Hari Y
    Chem Rec; 2022 May; 22(5):e202100325. PubMed ID: 35119181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Base-modified oligodeoxyribonucleotides: using pyrrolo[2,3-d]pyrimidines to replace purines.
    Seela F; Peng X
    Curr Protoc Nucleic Acid Chem; 2005 Apr; Chapter 4():Unit 4.25. PubMed ID: 18428940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stabilizing or destabilizing oligodeoxynucleotide duplexes containing single 2'-deoxyuridine residues with 5-alkynyl substituents.
    Kottysch T; Ahlborn C; Brotzel F; Richert C
    Chemistry; 2004 Aug; 10(16):4017-28. PubMed ID: 15316994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Double sugar and phosphate backbone-constrained nucleotides: synthesis, structure, stability, and their incorporation into oligodeoxynucleotides.
    Zhou C; Plashkevych O; Chattopadhyaya J
    J Org Chem; 2009 May; 74(9):3248-65. PubMed ID: 19348480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. C5-azobenzene-functionalized locked nucleic acid uridine: isomerization properties, hybridization ability, and enzymatic stability.
    Morihiro K; Hasegawa O; Mori S; Tsunoda S; Obika S
    Org Biomol Chem; 2015 May; 13(18):5209-14. PubMed ID: 25853508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Post-Synthetic Modification of Oligonucleotides Through Oxidative Amination of 4-Thio-2'-Deoxyuridine.
    Wang J; Shang J; Xiang Y; Tong A
    Curr Protoc; 2021 Oct; 1(10):e274. PubMed ID: 34644451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sulfonamide bearing oligonucleotides: simple synthesis and efficient RNA recognition.
    Kumar P; Chandak N; Nielsen P; Sharma PK
    Bioorg Med Chem; 2012 Jun; 20(12):3843-9. PubMed ID: 22579616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of Nucleobase-Functionalized Morpholino Monomers.
    Nandi B; Pattanayak S; Paul S; Kundu J; Sinha S
    Methods Mol Biol; 2019; 1973():107-130. PubMed ID: 31016698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of scpBNA-
    Horiba M; Yamaguchi T; Obika S
    J Org Chem; 2016 Nov; 81(22):11000-11008. PubMed ID: 27779877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. General Method for Post-Synthetic Modification of Oligonucleotides Based on Oxidative Amination of 4-Thio-2'-deoxyuridine.
    Wang J; Shang J; Xiang Y; Tong A
    Bioconjug Chem; 2021 Apr; 32(4):721-728. PubMed ID: 33730486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Syntheses of Pyrimidine-Modified Seleno-DNAs as Stable Antisense Molecules.
    Fang Z; Dantsu Y; Chen C; Zhang W; Huang Z
    bioRxiv; 2023 May; ():. PubMed ID: 37205589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and properties of GuNA purine/pyrimidine nucleosides and oligonucleotides.
    Kumagai S; Sawamoto H; Takegawa-Araki T; Arai Y; Yamakoshi S; Yamada K; Ohta T; Kawanishi E; Horie N; Yamaguchi T; Obika S
    Org Biomol Chem; 2020 Dec; 18(46):9461-9472. PubMed ID: 33179694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Base-modified oligonucleotides with increased duplex stability: pyrazolo[3,4-d] pyrimidines replacing purines.
    Seela F; He Y; He J; Becher G; Kröschel R; Zulauf M; Leonard P
    Methods Mol Biol; 2005; 288():165-86. PubMed ID: 15333903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modification of DNA with octadiynyl side chains: synthesis, base pairing, and formation of fluorescent coumarin dye conjugates of four nucleobases by the alkyne--azide "click" reaction.
    Seela F; Sirivolu VR; Chittepu P
    Bioconjug Chem; 2008 Jan; 19(1):211-24. PubMed ID: 18020404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A highly constrained nucleic acid analog based on α-l-threosamine.
    Morihiro K; Okamoto A
    Nucleosides Nucleotides Nucleic Acids; 2020; 39(1-3):270-279. PubMed ID: 31530088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and properties of oligonucleotides modified with an
    Horie N; Yamaguchi T; Kumagai S; Obika S
    Beilstein J Org Chem; 2021; 17():622-629. PubMed ID: 33747234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 8-Aza-7-deazaguanine nucleosides and oligonucleotides with octadiynyl side chains: synthesis, functionalization by the azide-alkyne 'click' reaction and nucleobase specific fluorescence quenching of coumarin dye conjugates.
    Seela F; Xiong H; Leonard P; Budow S
    Org Biomol Chem; 2009 Apr; 7(7):1374-87. PubMed ID: 19300823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and Properties of Nucleobase-Sugar Dual Modified Nucleic Acids: 2
    Sakurai Y; Yamaguchi T; Yoshida T; Horiba M; Inoue T; Obika S
    J Org Chem; 2023 Jan; 88(1):154-162. PubMed ID: 36520114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformation of formacetal and 3'-thioformacetal nucleotide linkers and stability of their antisense RNA.DNA hybrid duplexes.
    Rice JS; Gao X
    Biochemistry; 1997 Jan; 36(2):399-411. PubMed ID: 9003193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.