These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 37636089)
41. Differential expression of flavonoid biosynthesis genes and accumulation of phenolic compounds in common buckwheat (Fagopyrum esculentum). Li X; Park NI; Xu H; Woo SH; Park CH; Park SU J Agric Food Chem; 2010 Dec; 58(23):12176-81. PubMed ID: 21062042 [TBL] [Abstract][Full Text] [Related]
42. Transcriptome analysis and differential expression in Arabidopsis thaliana in response to rohitukine (a chromone alkaloid) treatment. Ahmed S; Chouhan R; Junaid A; Jamwal VL; Thakur J; Mir BA; Gandhi SG Funct Integr Genomics; 2023 Jan; 23(1):35. PubMed ID: 36629976 [TBL] [Abstract][Full Text] [Related]
43. De novo assembly and characterization of Camelina sativa transcriptome by paired-end sequencing. Liang C; Liu X; Yiu SM; Lim BL BMC Genomics; 2013 Mar; 14():146. PubMed ID: 23496985 [TBL] [Abstract][Full Text] [Related]
44. Plant-like biosynthetic pathways in bacteria: from benzoic acid to chalcone. Moore BS; Hertweck C; Hopke JN; Izumikawa M; Kalaitzis JA; Nilsen G; O'Hare T; Piel J; Shipley PR; Xiang L; Austin MB; Noel JP J Nat Prod; 2002 Dec; 65(12):1956-62. PubMed ID: 12502351 [TBL] [Abstract][Full Text] [Related]
45. [Transcriptome profiling of Saposhnikovia divaricata growing for different years and mining of key genes in active ingredient biosynthesis]. Kou PW; Liu CL; Xu YK; Li B; Song ZX; Zhang YS; Huang WJ; Tang ZS Zhongguo Zhong Yao Za Zhi; 2022 Sep; 47(17):4609-4617. PubMed ID: 36164866 [TBL] [Abstract][Full Text] [Related]
46. De novo transcriptome assembly of the wild relative of tea tree (Camellia taliensis) and comparative analysis with tea transcriptome identified putative genes associated with tea quality and stress response. Zhang HB; Xia EH; Huang H; Jiang JJ; Liu BY; Gao LZ BMC Genomics; 2015 Apr; 16(1):298. PubMed ID: 25881092 [TBL] [Abstract][Full Text] [Related]
47. High-throughput sequencing and de novo transcriptome assembly of Swertia japonica to identify genes involved in the biosynthesis of therapeutic metabolites. Rai A; Nakamura M; Takahashi H; Suzuki H; Saito K; Yamazaki M Plant Cell Rep; 2016 Oct; 35(10):2091-111. PubMed ID: 27378356 [TBL] [Abstract][Full Text] [Related]
48. Pyrosequencing of the Camptotheca acuminata transcriptome reveals putative genes involved in camptothecin biosynthesis and transport. Sun Y; Luo H; Li Y; Sun C; Song J; Niu Y; Zhu Y; Dong L; Lv A; Tramontano E; Chen S BMC Genomics; 2011 Oct; 12():533. PubMed ID: 22035094 [TBL] [Abstract][Full Text] [Related]
49. De novo transcriptome sequencing of radish (Raphanus sativus L.) fleshy roots: analysis of major genes involved in the anthocyanin synthesis pathway. Gao J; Li WB; Liu HF; Chen FB BMC Mol Cell Biol; 2019 Oct; 20(1):45. PubMed ID: 31646986 [TBL] [Abstract][Full Text] [Related]
50. De novo Sequencing and Transcriptome Analysis of Pinellia ternata Identify the Candidate Genes Involved in the Biosynthesis of Benzoic Acid and Ephedrine. Zhang GH; Jiang NH; Song WL; Ma CH; Yang SC; Chen JW Front Plant Sci; 2016; 7():1209. PubMed ID: 27579029 [TBL] [Abstract][Full Text] [Related]
51. De novo Assembly of Leaf Transcriptome in the Medicinal Plant Andrographis paniculata. Cherukupalli N; Divate M; Mittapelli SR; Khareedu VR; Vudem DR Front Plant Sci; 2016; 7():1203. PubMed ID: 27582746 [TBL] [Abstract][Full Text] [Related]
52. De novo transcriptome analysis of rose-scented geranium provides insights into the metabolic specificity of terpene and tartaric acid biosynthesis. Narnoliya LK; Kaushal G; Singh SP; Sangwan RS BMC Genomics; 2017 Jan; 18(1):74. PubMed ID: 28086783 [TBL] [Abstract][Full Text] [Related]
53. Integrated Transcriptomic and Metabolomic analysis reveals a transcriptional regulation network for the biosynthesis of carotenoids and flavonoids in 'Cara cara' navel Orange. Zhang H; Chen J; Peng Z; Shi M; Liu X; Wen H; Jiang Y; Cheng Y; Xu J; Zhang H BMC Plant Biol; 2021 Jan; 21(1):29. PubMed ID: 33413111 [TBL] [Abstract][Full Text] [Related]
54. Exploring genes involved in benzoic acid biosynthesis in the Populus davidiana transcriptome and their transcriptional activity upon methyl jasmonate treatment. Park SB; Kim JY; Han JY; Ahn CH; Park EJ; Choi YE J Chem Ecol; 2017 Dec; 43(11-12):1097-1108. PubMed ID: 29129016 [TBL] [Abstract][Full Text] [Related]
55. Production of plant-specific flavanones by Escherichia coli containing an artificial gene cluster. Hwang EI; Kaneko M; Ohnishi Y; Horinouchi S Appl Environ Microbiol; 2003 May; 69(5):2699-706. PubMed ID: 12732539 [TBL] [Abstract][Full Text] [Related]
56. De Novo transcriptome sequencing reveals important molecular networks and metabolic pathways of the plant, Chlorophytum borivilianum. Kalra S; Puniya BL; Kulshreshtha D; Kumar S; Kaur J; Ramachandran S; Singh K PLoS One; 2013; 8(12):e83336. PubMed ID: 24376689 [TBL] [Abstract][Full Text] [Related]
57. Transcriptome Analysis Reveals the Genetic Basis of the Resveratrol Biosynthesis Pathway in an Endophytic Fungus (Alternaria sp. MG1) Isolated from Vitis vinifera. Che J; Shi J; Gao Z; Zhang Y Front Microbiol; 2016; 7():1257. PubMed ID: 27588016 [TBL] [Abstract][Full Text] [Related]
59. De novo characterization of the Lycium chinense Mill. leaf transcriptome and analysis of candidate genes involved in carotenoid biosynthesis. Wang G; Du X; Ji J; Guan C; Li Z; Josine TL Gene; 2015 Jan; 555(2):458-63. PubMed ID: 25445268 [TBL] [Abstract][Full Text] [Related]
60. De novo transcriptome and tissue specific expression analysis of genes associated with biosynthesis of secondary metabolites in Operculina turpethum (L.). Biswal B; Jena B; Giri AK; Acharya L Sci Rep; 2021 Nov; 11(1):22539. PubMed ID: 34795371 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]