BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 37636278)

  • 1. Obese Ningxiang pig-derived microbiota rewires carnitine metabolism to promote muscle fatty acid deposition in lean DLY pigs.
    Yin J; Li Y; Tian Y; Zhou F; Ma J; Xia S; Yang T; Ma L; Zeng Q; Liu G; Yin Y; Huang X
    Innovation (Camb); 2023 Sep; 4(5):100486. PubMed ID: 37636278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Higher niacin intakes improve the lean meat rate of Ningxiang pigs by regulating lipid metabolism and gut microbiota.
    Wang Z; Zeng X; Zhang C; Wang Q; Zhang W; Xie J; Chen J; Hu Q; Wang Q; Yang H; Yin Y
    Front Nutr; 2022; 9():959039. PubMed ID: 36276825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative Analysis of Structural Composition and Function of Intestinal Microbiota between Chinese Indigenous Laiwu Pigs and Commercial DLY Pigs.
    Li C; Zhao X; Zhao G; Xue H; Wang Y; Ren Y; Li J; Wang H; Wang J; Song Q
    Vet Sci; 2023 Aug; 10(8):. PubMed ID: 37624311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative Study on Jejunal Immunity and Microbial Composition of Growing-Period Tibetan Pigs and Duroc × (Landrace × Yorkshire) Pigs.
    Yang Y; Li Y; Xie Y; Qiao S; Yang L; Pan H
    Front Vet Sci; 2022; 9():890585. PubMed ID: 35548051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated analysis of multi-tissues lipidome and gut microbiome reveals microbiota-induced shifts on lipid metabolism in pigs.
    Xie C; Zhu X; Xu B; Niu Y; Zhang X; Ma L; Yan X
    Anim Nutr; 2022 Sep; 10():280-293. PubMed ID: 35785254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gut microbial profiles and the role in lipid metabolism in Shaziling pigs.
    Ma J; Duan Y; Li R; Liang X; Li T; Huang X; Yin Y; Yin J
    Anim Nutr; 2022 Jun; 9():345-356. PubMed ID: 35600540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-omics analysis reveals gut microbiota-induced intramuscular fat deposition via regulating expression of lipogenesis-associated genes.
    Xie C; Teng J; Wang X; Xu B; Niu Y; Ma L; Yan X
    Anim Nutr; 2022 Jun; 9():84-99. PubMed ID: 35949981
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Hou G; Wei L; Li R; Chen F; Yin J; Huang X; Yin Y
    Animals (Basel); 2024 Jun; 14(12):. PubMed ID: 38929420
    [No Abstract]   [Full Text] [Related]  

  • 9. CIDE gene expression in adipose tissue, liver, and skeletal muscle from obese and lean pigs.
    Qiu YQ; Yang XF; Ma XY; Xiong YX; Tian ZM; Fan QL; Wang L; Jiang ZY
    J Zhejiang Univ Sci B; 2017 Jun; 18(6):492-500. PubMed ID: 28585425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolomics Analysis Provides Novel Insights into the Difference in Meat Quality between Different Pig Breeds.
    Liu H; He J; Yuan Z; Xie K; He Z; Zhou X; Wang M; He J
    Foods; 2023 Sep; 12(18):. PubMed ID: 37761184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trans-Species Fecal Transplant Revealed the Role of the Gut Microbiome as a Contributor to Energy Metabolism and Development of Skeletal Muscle.
    Cai L; Li M; Zhou S; Zhu X; Zhang X; Xu Q
    Metabolites; 2022 Aug; 12(8):. PubMed ID: 36005641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Betaine Diet on Growth Performance, Carcass Quality and Fat Deposition in Finishing Ningxiang Pigs.
    Wang Y; Chen J; Ji Y; Lin X; Zhao Y
    Animals (Basel); 2021 Nov; 11(12):. PubMed ID: 34944185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Breed difference and regulatory role of CRTC3 in porcine intramuscular adipocyte.
    Liu J; Nong Q; Wang J; Chen W; Xu Z; You W; Xie J; Wang Y; Shan T
    Anim Genet; 2020 Aug; 51(4):521-530. PubMed ID: 32400010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gut microbiota-derived 3-phenylpropionic acid promotes intestinal epithelial barrier function via AhR signaling.
    Hu J; Chen J; Xu X; Hou Q; Ren J; Yan X
    Microbiome; 2023 May; 11(1):102. PubMed ID: 37158970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative Transcriptomic Analysis of mRNAs, miRNAs and lncRNAs in the
    Zhang J; Wang J; Ma C; Wang W; Wang H; Jiang Y
    Biomolecules; 2022 Sep; 12(9):. PubMed ID: 36139132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrative Analysis of Transcriptomic and Lipidomic Profiles Reveals a Differential Subcutaneous Adipose Tissue Mechanism among Ningxiang Pig and Berkshires, and Their Offspring.
    Deng X; Zhang Y; Song G; Fu Y; Chen Y; Gao H; Wang Q; Jin Z; Yin Y; Xu K
    Animals (Basel); 2023 Oct; 13(21):. PubMed ID: 37958077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of serum metabolite compositions between obese and lean growing pigs using an NMR-based metabonomic approach.
    He Q; Ren P; Kong X; Wu Y; Wu G; Li P; Hao F; Tang H; Blachier F; Yin Y
    J Nutr Biochem; 2012 Feb; 23(2):133-9. PubMed ID: 21429726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive Multi-Omic Evaluation of the Microbiota and Metabolites in the Colons of Diverse Swine Breeds.
    Zhu Y; Sun G; Cidan Y; Shi B; Tan Z; Zhang J; Basang W
    Animals (Basel); 2024 Apr; 14(8):. PubMed ID: 38672368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prevotella copri increases fat accumulation in pigs fed with formula diets.
    Chen C; Fang S; Wei H; He M; Fu H; Xiong X; Zhou Y; Wu J; Gao J; Yang H; Huang L
    Microbiome; 2021 Aug; 9(1):175. PubMed ID: 34419147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Longitudinal Analysis of the Intestinal Microbiota in the Obese Mangalica Pig Reveals Alterations in Bacteria and Bacteriophage Populations Associated With Changes in Body Composition and Diet.
    Hallowell HA; Higgins KV; Roberts M; Johnson RM; Bayne J; Maxwell HS; Brandebourg T; Hiltbold Schwartz E
    Front Cell Infect Microbiol; 2021; 11():698657. PubMed ID: 34737972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.