These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 3763656)

  • 1. Substantia nigra lesions attenuate the development of hypertension and behavioural hyperreactivity in spontaneously hypertensive rats.
    Van den Buuse M; Veldhuis HD; Versteeg DH; De Jong W
    Pharmacol Biochem Behav; 1986 Aug; 25(2):317-24. PubMed ID: 3763656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The nigrostriatal dopamine system and the development of hypertension in the spontaneously hypertensive rat.
    de Jong W; Linthorst AC; Versteeg HG
    Arch Mal Coeur Vaiss; 1995 Aug; 88(8):1193-6. PubMed ID: 8572872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain dopamine depletion by lesions in the substantia nigra attenuates the development of hypertension in the spontaneously hypertensive rat.
    van den Buuse M; Versteeg DH; de Jong W
    Brain Res; 1986 Mar; 368(1):69-78. PubMed ID: 3006867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Behavioural factors contribute to the development of spontaneous hypertension in rats.
    Van den Buuse M; Veldhuis HD; Versteeg DH; De Jong W
    J Hypertens Suppl; 1985 Dec; 3(3):S101-3. PubMed ID: 2856680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The nigrostriatal dopamine system: role in the development of hypertension in spontaneously hypertensive rats.
    Linthorst AC; van Giersbergen PL; Gras M; Versteeg DH; de Jong W
    Brain Res; 1994 Mar; 639(2):261-8. PubMed ID: 8205480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of brain dopamine systems in the development of hypertension in the spontaneously hypertensive rat.
    van den Buuse M; Linthorst AC; Versteeg DH; de Jong W
    Clin Exp Hypertens A; 1991; 13(5):653-9. PubMed ID: 1685356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Open-field behaviour and blood pressure in spontaneously hypertensive rats.
    van den Buuse M; de Jong W
    Clin Exp Hypertens A; 1988; 10(4):667-84. PubMed ID: 3390966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain catecholamines in spontaneously hypertensive and DOCA-salt hypertensive rats.
    Fujino K
    Acta Med Okayama; 1984 Aug; 38(4):325-40. PubMed ID: 6149670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observations on pain perception and hypertension in spontaneously hypertensive rats.
    Sitsen JM; de Jong W
    Clin Exp Hypertens A; 1984; 6(7):1345-56. PubMed ID: 6088132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential effects of dopaminergic drugs on open-field behavior of spontaneously hypertensive rats and normotensive Wistar-Kyoto rats.
    van den Buuse M; de Jong W
    J Pharmacol Exp Ther; 1989 Mar; 248(3):1189-96. PubMed ID: 2564890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Renal function contributes to antihypertensive effect of vasopressin in DOCA-salt but not spontaneous hypertension.
    Wang H; McNeill JR
    Am J Physiol; 1994 Nov; 267(5 Pt 2):H1842-50. PubMed ID: 7977814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Renal AT1 receptor: computerized quantification in spontaneously hypertensive rats and DOCA-salt rats.
    Asano N; Ogura T; Mimura Y; Otsuka F; Kishida M; Hashimoto M; Yamauchi T; Makino H
    Res Commun Mol Pathol Pharmacol; 1998 May; 100(2):171-80. PubMed ID: 9667071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hippocampal levels of dynorphin A (1-8) in neonatal and 16-week-old spontaneously hypertensive rats: comparisons with DOCA-salt hypertension.
    Li SJ; Hong JS; Ingenito AJ
    Neurochem Res; 1990 Nov; 15(11):1141-6. PubMed ID: 1982462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of the dopamine D2 receptor agonist quinpirole on the in vivo release of dopamine in the caudate nucleus of hypertensive rats.
    Linthorst AC; De Lang H; De Jong W; Versteeg DH
    Eur J Pharmacol; 1991 Aug; 201(2-3):125-33. PubMed ID: 1686754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of SCH 23390 and quinpirole on novelty-induced grooming behaviour in spontaneously hypertensive rats and Wistar-Kyoto rats.
    Linthorst AC; Broekhoven MH; De Jong W; Van Wimersma Greidanus TB; Versteeg DH
    Eur J Pharmacol; 1992 Aug; 219(1):23-8. PubMed ID: 1397047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of the intracerebroventricular injection of dopamine on blood pressure in the spontaneously hypertensive rat.
    Kawabe H; Kondo K; Saruta T
    Clin Exp Hypertens A; 1983; 5(10):1703-16. PubMed ID: 6667557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Central 6-OHDA affects both open-field exploratory behaviour and the development of hypertension in SHR.
    Van den Buuse M; Veldhuis HD; de Boer S; Versteeg DH; de Jong W
    Pharmacol Biochem Behav; 1986 Jan; 24(1):15-21. PubMed ID: 3080759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of blood pressure in regulating Na+/H+ exchange in vascular smooth muscle.
    Ellstrom DR; Honeyman TW; Scheid CR
    Am J Hypertens; 1994 Apr; 7(4 Pt 1):340-5. PubMed ID: 8031549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding of [3H]nitrendipine to cardiac and cerebral membranes from normotensive and renal, deoxycorticosterone/NaCl and spontaneously hypertensive rats.
    Ishii K; Kano T; Ando J; Yoshida H
    Eur J Pharmacol; 1986 Apr; 123(2):271-8. PubMed ID: 2940102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-lasting hypotensive and antihypertensive effects of a new 1,5-benzothiazepine calcium antagonist in hypertensive rats and renal hypertensive dogs.
    Narita H; Murata S; Yabana H; Kikkawa K; Sugawara Y; Akimoto Y; Nagao T
    Arzneimittelforschung; 1988 Apr; 38(4):515-20. PubMed ID: 3041970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.