BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 37637009)

  • 1. Reversible Thermal Conductivity Switching Using Flexible Metal-Organic Frameworks.
    Babaei H; Meihaus KR; Long JR
    Chem Mater; 2023 Aug; 35(16):6220-6226. PubMed ID: 37637009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible and high-contrast thermal conductivity switching in a flexible covalent organic framework possessing negative Poisson's ratio.
    Thakur S; Giri A
    Mater Horiz; 2023 Nov; 10(12):5484-5491. PubMed ID: 37843868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning the Adsorption-Induced Phase Change in the Flexible Metal-Organic Framework Co(bdp).
    Taylor MK; Runčevski T; Oktawiec J; Gonzalez MI; Siegelman RL; Mason JA; Ye J; Brown CM; Long JR
    J Am Chem Soc; 2016 Nov; 138(45):15019-15026. PubMed ID: 27804295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methane storage in flexible metal-organic frameworks with intrinsic thermal management.
    Mason JA; Oktawiec J; Taylor MK; Hudson MR; Rodriguez J; Bachman JE; Gonzalez MI; Cervellino A; Guagliardi A; Brown CM; Llewellyn PL; Masciocchi N; Long JR
    Nature; 2015 Nov; 527(7578):357-61. PubMed ID: 26503057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unconventional and Dynamically Anisotropic Thermal Conductivity in Compressed Flexible Graphene Foams.
    Xiong Z; Marconnet A; Ruan X
    ACS Appl Mater Interfaces; 2022 Nov; 14(43):48960-48966. PubMed ID: 36256868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heat Transfer Mechanisms and Tunable Thermal Conductivity Anisotropy in Two-Dimensional Covalent Organic Frameworks with Adsorbed Gases.
    Giri A; Hopkins PE
    Nano Lett; 2021 Jul; 21(14):6188-6193. PubMed ID: 34264090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding the influence of secondary building units on the thermal conductivity of metal-organic frameworks
    Lin Y; Cheng R; Liang T; Wu W; Li S; Li W
    Phys Chem Chem Phys; 2023 Dec; 25(47):32407-32415. PubMed ID: 38009366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Near-Perfect CO
    Taylor MK; Runčevski T; Oktawiec J; Bachman JE; Siegelman RL; Jiang H; Mason JA; Tarver JD; Long JR
    J Am Chem Soc; 2018 Aug; 140(32):10324-10331. PubMed ID: 30032596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Switchable electrical conductivity in a three-dimensional metal-organic framework
    Wentz HC; Skorupskii G; Bonfim AB; Mancuso JL; Hendon CH; Oriel EH; Sazama GT; Campbell MG
    Chem Sci; 2019 Dec; 11(5):1342-1346. PubMed ID: 34123257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sub-Micrometer Phonon Mean Free Paths in Metal-Organic Frameworks Revealed by Machine Learning Molecular Dynamics Simulations.
    Ying P; Liang T; Xu K; Zhang J; Xu J; Zhong Z; Fan Z
    ACS Appl Mater Interfaces; 2023 Aug; 15(30):36412-36422. PubMed ID: 37481760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pushing the Limits of Heat Conduction in Covalent Organic Frameworks Through High-Throughput Screening of Their Thermal Conductivity.
    Thakur S; Giri A
    Small; 2024 Apr; ():e2401702. PubMed ID: 38567486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Switching in Metal-Organic Frameworks.
    Bigdeli F; Lollar CT; Morsali A; Zhou HC
    Angew Chem Int Ed Engl; 2020 Mar; 59(12):4652-4669. PubMed ID: 31134738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal Conductivity of Covalent-Organic Frameworks.
    Kwon J; Ma H; Giri A; Hopkins PE; Shustova NB; Tian Z
    ACS Nano; 2023 Aug; 17(16):15222-15230. PubMed ID: 37552587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced Thermal Conductivity in a Diamine-Appended Metal-Organic Framework as a Result of Cooperative CO
    Babaei H; Lee JH; Dods MN; Wilmer CE; Long JR
    ACS Appl Mater Interfaces; 2020 Oct; 12(40):44617-44621. PubMed ID: 32870642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal Engineering of Metal-Organic Frameworks for Adsorption Applications: A Molecular Simulation Perspective.
    Wieme J; Vandenbrande S; Lamaire A; Kapil V; Vanduyfhuys L; Van Speybroeck V
    ACS Appl Mater Interfaces; 2019 Oct; 11(42):38697-38707. PubMed ID: 31556593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Insights into the Correlation between Microstructure and Thermal Conductivity of Zeolitic Imidazolate Frameworks.
    Cheng R; Li W; Wei W; Huang J; Li S
    ACS Appl Mater Interfaces; 2021 Mar; 13(12):14141-14149. PubMed ID: 33739806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strain-controlled thermal conductivity in ferroic twinned films.
    Li S; Ding X; Ren J; Moya X; Li J; Sun J; Salje EK
    Sci Rep; 2014 Sep; 4():6375. PubMed ID: 25224749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pore Size Dictates Anisotropic Thermal Conductivity of Two-Dimensional Covalent Organic Frameworks with Adsorbed Gases.
    Rahman MA; Dionne CJ; Giri A
    ACS Appl Mater Interfaces; 2022 May; 14(18):21687-21695. PubMed ID: 35482844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ion conductivity and transport by porous coordination polymers and metal-organic frameworks.
    Horike S; Umeyama D; Kitagawa S
    Acc Chem Res; 2013 Nov; 46(11):2376-84. PubMed ID: 23730917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermally Conductive Self-Healing Nanoporous Materials Based on Hydrogen-Bonded Organic Frameworks.
    Rahman MA; Dionne CJ; Giri A
    Nano Lett; 2022 Nov; 22(21):8534-8540. PubMed ID: 36260758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.