BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 37637202)

  • 1. Microbial production of
    He S; Wang W; Wang W; Hu H; Xu P; Tang H
    Synth Syst Biotechnol; 2023 Sep; 8(3):536-545. PubMed ID: 37637202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering
    Vilbert AC; Kontur WS; Gille D; Noguera DR; Donohue TJ
    Appl Environ Microbiol; 2024 Jan; 90(1):e0166023. PubMed ID: 38117061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic engineering of Klebsiella pneumoniae for the production of cis,cis-muconic acid.
    Jung HM; Jung MY; Oh MK
    Appl Microbiol Biotechnol; 2015 Jun; 99(12):5217-25. PubMed ID: 25681152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosensors for the detection of chorismate and cis, cis-muconic acid in Corynebacterium glutamicum.
    Velasquez-Guzman JC; Huttanus HM; Morales DP; Werner TS; Carroll AL; Guss AM; Yeager CM; Dale T; Jha RK
    J Ind Microbiol Biotechnol; 2024 Jun; ():. PubMed ID: 38944415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soil bioremediation by Pseudomonas brassicacearum MPDS and its enzyme involved in degrading PAHs.
    Chen Z; Hu H; Xu P; Tang H
    Sci Total Environ; 2022 Mar; 813():152522. PubMed ID: 34953839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of medium composition for cis,cis-muconic acid production by a Pseudomonas sp. mutant using statistical methods.
    Xie NZ; Wang QY; Zhu QX; Qin Y; Tao F; Huang RB; Xu P
    Prep Biochem Biotechnol; 2014; 44(4):342-54. PubMed ID: 24320235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing muconic acid production from glucose and lignin-derived aromatic compounds via increased protocatechuate decarboxylase activity.
    Johnson CW; Salvachúa D; Khanna P; Smith H; Peterson DJ; Beckham GT
    Metab Eng Commun; 2016 Dec; 3():111-119. PubMed ID: 29468118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pseudomonas sp. NGC7 as a microbial chassis for glucose-free muconate production from a variety of lignin-derived aromatics and its application to the production from sugar cane bagasse alkaline extract.
    Akutsu M; Abe N; Sakamoto C; Kurimoto Y; Sugita H; Tanaka M; Higuchi Y; Sakamoto K; Kamimura N; Kurihara H; Masai E; Sonoki T
    Bioresour Technol; 2022 Sep; 359():127479. PubMed ID: 35714780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of protocatechuate decarboxylase activity for the effective production of muconate from lignin-related aromatic compounds.
    Sonoki T; Morooka M; Sakamoto K; Otsuka Y; Nakamura M; Jellison J; Goodell B
    J Biotechnol; 2014 Dec; 192 Pt A():71-7. PubMed ID: 25449108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catechol 1,2-Dioxygenase From
    Aravind MK; Varalakshmi P; John SA; Ashokkumar B
    Front Bioeng Biotechnol; 2021; 9():703399. PubMed ID: 34790650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Broad substrate specificity of naphthalene- and biphenyl-utilizing bacteria.
    Baldwin BR; Mesarch MB; Nies L
    Appl Microbiol Biotechnol; 2000 Jun; 53(6):748-53. PubMed ID: 10919338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation of a novel platform bacterium for lignin valorization and its application in glucose-free cis,cis-muconate production.
    Shinoda E; Takahashi K; Abe N; Kamimura N; Sonoki T; Masai E
    J Ind Microbiol Biotechnol; 2019 Aug; 46(8):1071-1080. PubMed ID: 31134414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple Roles for Two Efflux Pumps in the Polycyclic Aromatic Hydrocarbon-Degrading Pseudomonas putida Strain B6-2 (DSM 28064).
    Yao X; Tao F; Zhang K; Tang H; Xu P
    Appl Environ Microbiol; 2017 Dec; 83(24):. PubMed ID: 29030440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloning and analysis of the genes for polycyclic aromatic hydrocarbon degradation.
    Zylstra GJ; Wang XP; Kim E; Didolkar VA
    Ann N Y Acad Sci; 1994 May; 721():386-98. PubMed ID: 8010687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemotaxis of Pseudomonas spp. to the polyaromatic hydrocarbon naphthalene.
    Grimm AC; Harwood CS
    Appl Environ Microbiol; 1997 Oct; 63(10):4111-5. PubMed ID: 9327579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic mapping of highly versatile and solvent-tolerant Pseudomonas putida B6-2 (ATCC BAA-2545) as a 'superstar' for mineralization of PAHs and dioxin-like compounds.
    Wang W; Li Q; Zhang L; Cui J; Yu H; Wang X; Ouyang X; Tao F; Xu P; Tang H
    Environ Microbiol; 2021 Aug; 23(8):4309-4325. PubMed ID: 34056829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome Analysis of Naphthalene-Degrading
    Kim J; Park W
    J Microbiol Biotechnol; 2018 Feb; 28(2):330-337. PubMed ID: 29169219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical structure and biodegradability of halogenated aromatic compounds. Conversion of chlorinated muconic acids into maleoylacetic acid.
    Schmidt E; Knackmuss HJ
    Biochem J; 1980 Oct; 192(1):339-47. PubMed ID: 7305906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering glucose metabolism for enhanced muconic acid production in Pseudomonas putida KT2440.
    Bentley GJ; Narayanan N; Jha RK; Salvachúa D; Elmore JR; Peabody GL; Black BA; Ramirez K; De Capite A; Michener WE; Werner AZ; Klingeman DM; Schindel HS; Nelson R; Foust L; Guss AM; Dale T; Johnson CW; Beckham GT
    Metab Eng; 2020 May; 59():64-75. PubMed ID: 31931111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expansion of growth substrate range in Pseudomonas putida F1 by mutations in both cymR and todS, which recruit a ring-fission hydrolase CmtE and induce the tod catabolic operon, respectively.
    Choi EN; Cho MC; Kim Y; Kim CK; Lee K
    Microbiology (Reading); 2003 Mar; 149(Pt 3):795-805. PubMed ID: 12634347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.