BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 37637974)

  • 1. A Theoretical Study of Armchair Antimonene Nanoribbons in the Presence of Uniaxial Strain Based on First-Principles Calculations.
    Yazdanpanah Goharrizi A; Barzoki AM; Selberherr S; Filipovic L
    ACS Appl Electron Mater; 2023 Aug; 5(8):4514-4522. PubMed ID: 37637974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphenylene nanoribbons: electronic, optical and thermoelectric properties from first-principles calculations.
    Meftakhutdinov RM; Sibatov RT; Kochaev AI
    J Phys Condens Matter; 2020 May; 32(34):. PubMed ID: 32303006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering the work function of armchair graphene nanoribbons using strain and functional species: a first principles study.
    Peng X; Tang F; Copple A
    J Phys Condens Matter; 2012 Feb; 24(7):075501. PubMed ID: 22297686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strain and orientation modulated bandgaps and effective masses of phosphorene nanoribbons.
    Han X; Stewart HM; Shevlin SA; Catlow CR; Guo ZX
    Nano Lett; 2014 Aug; 14(8):4607-14. PubMed ID: 24992160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic Structure and Carrier Mobilities of Arsenene and Antimonene Nanoribbons: A First-Principle Study.
    Wang Y; Ding Y
    Nanoscale Res Lett; 2015 Dec; 10(1):955. PubMed ID: 26058516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic Band Gap Tuning and Calculations of Mechanical Strength and Deformation Potential by Applying Uniaxial Strain on MX
    Devi A; Kumar N; Thakur A; Kumar A; Singh A; Ahluwalia PK
    ACS Omega; 2022 Nov; 7(44):40054-40066. PubMed ID: 36385828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Half metallicity and ferromagnetism of vanadium nitride nanoribbons: a first-principles study.
    Ghosh A; Kar M; Majumder C; Sarkar P
    Phys Chem Chem Phys; 2021 Jan; 23(2):1127-1138. PubMed ID: 33346763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strain-dependent electronic and magnetic properties of MoS2 monolayer, bilayer, nanoribbons and nanotubes.
    Lu P; Wu X; Guo W; Zeng XC
    Phys Chem Chem Phys; 2012 Oct; 14(37):13035-40. PubMed ID: 22911017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polygermanes: bandgap engineering via tensile strain and side-chain substitution.
    Fa W; Zeng XC
    Chem Commun (Camb); 2014 Aug; 50(65):9126-9. PubMed ID: 24990582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The unique carrier mobility of monolayer Janus MoSSe nanoribbons: a first-principles study.
    Yin WJ; Liu Y; Wen B; Li XB; Chai YF; Wei XL; Ma S; Teobaldi G
    Dalton Trans; 2021 Jul; 50(29):10252-10260. PubMed ID: 34251008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of the edge type and strain on the structural, electronic and magnetic properties of the BNRs.
    Bhattacharyya S; Kawazoe Y; Singhl AK
    J Nanosci Nanotechnol; 2012 Mar; 12(3):1899-902. PubMed ID: 22754996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-Situ Stretching Patterned Graphene Nanoribbons in the Transmission Electron Microscope.
    Liao Z; Medrano Sandonas L; Zhang T; Gall M; Dianat A; Gutierrez R; Mühle U; Gluch J; Jordan R; Cuniberti G; Zschech E
    Sci Rep; 2017 Mar; 7(1):211. PubMed ID: 28303001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of electronic and magnetic properties in InSe nanoribbons: edge effect.
    Wu M; Shi JJ; Zhang M; Ding YM; Wang H; Cen YL; Guo WH; Pan SH; Zhu YH
    Nanotechnology; 2018 May; 29(20):205708. PubMed ID: 29504514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analytical performance of 3 m and 3 m +1 armchair graphene nanoribbons under uniaxial strain.
    Kang ES; Ismail R
    Nanoscale Res Lett; 2014; 9(1):598. PubMed ID: 25404871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic and transport properties and physical field coupling effects for net-Y nanoribbons.
    Hu JK; Zhang ZH; Fan ZQ; Zhou RL
    Nanotechnology; 2019 Nov; 30(48):485703. PubMed ID: 31426048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-dimensional silicon bismotide (SiBi) monolayer with a honeycomb-like lattice: first-principles study of tuning the electronic properties.
    Bafekry A; Shojaei F; Obeid MM; Ghergherehchi M; Nguyen C; Oskouian M
    RSC Adv; 2020 Aug; 10(53):31894-31900. PubMed ID: 35518134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-scale solution synthesis of narrow graphene nanoribbons.
    Vo TH; Shekhirev M; Kunkel DA; Morton MD; Berglund E; Kong L; Wilson PM; Dowben PA; Enders A; Sinitskii A
    Nat Commun; 2014; 5():3189. PubMed ID: 24510014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uniaxial Strain-Induced Tunable Mid-infrared Light Emission from Thin Film Black Phosphorus.
    Chen H; Ge X; Wang Y; Xu Q; Li Z; Zhou X; Hao J; Hu W; Li S; Wang X
    J Phys Chem Lett; 2023 Mar; 14(8):2092-2098. PubMed ID: 36799775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic properties of phosphorene nanoribbons with nanoholes.
    Sun L; Zhang ZH; Wang H; Li M
    RSC Adv; 2018 Feb; 8(14):7486-7493. PubMed ID: 35539136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strain effect on electronic structures of graphene nanoribbons: A first-principles study.
    Sun L; Li Q; Ren H; Su H; Shi QW; Yang J
    J Chem Phys; 2008 Aug; 129(7):074704. PubMed ID: 19044789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.