These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 37637974)

  • 21. Theoretical study of the bandgap regulation of a two-dimensional GeSn alloy under biaxial strain and uniaxial strain along the armchair direction.
    Huang W; Yang H; Cheng B; Xue C
    Phys Chem Chem Phys; 2018 Sep; 20(36):23344-23351. PubMed ID: 30175833
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modulating Electronic Structures of Armchair GaN Nanoribbons by Chemical Functionalization under an Electric Field Effect.
    Alaal N; Roqan IS
    ACS Omega; 2020 Jan; 5(2):1261-1269. PubMed ID: 31984284
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Strain engineering on electronic structure, effective mass and charge carrier mobility in monolayer YBr
    Sun H; Wang L; Li Z; Yan X; Zhang X; Guo J; Liu P
    J Phys Condens Matter; 2023 Sep; 36(1):. PubMed ID: 37714188
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of spin-orbit coupling on transmission and absorption of electromagnetic waves in strained armchair phosphorene nanoribbons.
    Rezania H; Abdi M; Nourian E; Astinchap B
    RSC Adv; 2023 Jul; 13(32):22287-22301. PubMed ID: 37492510
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inverse relationship between carrier mobility and bandgap in graphene.
    Wang J; Zhao R; Yang M; Liu Z; Liu Z
    J Chem Phys; 2013 Feb; 138(8):084701. PubMed ID: 23464166
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electronic and transport properties of new carbon nanoribbons with 5-8-5 carbon rings: tuning stability by the edge shape effect.
    Mota EAV; da Silva CAB; Del Nero J
    Phys Chem Chem Phys; 2022 Dec; 24(48):29966-29976. PubMed ID: 36468821
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The dimensional and hydrogenating effect on the electronic properties of ZnSe nanomaterials: a computational investigation.
    Lv X; Li F; Gong J; Chen Z
    Phys Chem Chem Phys; 2018 Oct; 20(37):24453-24464. PubMed ID: 30221293
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Carbon phosphide nanosheets and nanoribbons: insights on modulating their electronic properties by first principles calculations.
    Chen T; Li H; Zhu Y; Liu D; Zhou G; Xu L
    Phys Chem Chem Phys; 2020 Oct; 22(39):22520-22528. PubMed ID: 33000812
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Insights into Structural, Electronic, and Transport Properties of Pentagonal PdSe
    Tien NT; Thao PTB; Dang NH; Khanh ND; Dien VK
    Nanomaterials (Basel); 2023 May; 13(11):. PubMed ID: 37299633
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tunable electronic properties of partially edge-hydrogenated armchair boron-nitrogen-carbon nanoribbons.
    Alaal N; Medhekar N; Shukla A
    Phys Chem Chem Phys; 2018 Apr; 20(15):10345-10358. PubMed ID: 29610823
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MoS2/MX2 heterobilayers: bandgap engineering via tensile strain or external electrical field.
    Lu N; Guo H; Li L; Dai J; Wang L; Mei WN; Wu X; Zeng XC
    Nanoscale; 2014 Mar; 6(5):2879-86. PubMed ID: 24473269
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Armchair Janus MoSSe Nanoribbon with Spontaneous Curling: A First-Principles Study.
    Sun N; Wang M; Quhe R; Liu Y; Liu W; Guo Z; Ye H
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947791
    [TBL] [Abstract][Full Text] [Related]  

  • 33. First-Principles Prediction of the Charge Mobility in Black Phosphorus Semiconductor Nanoribbons.
    Xiao J; Long M; Zhang X; Zhang D; Xu H; Chan KS
    J Phys Chem Lett; 2015 Oct; 6(20):4141-7. PubMed ID: 26722789
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phase transition and band-structure tuning in InN through uniaxial and biaxial strains.
    Duan Y; Qin L; Shi L; Tang G; Shi H
    J Phys Condens Matter; 2014 Jan; 26(2):025501. PubMed ID: 24305640
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Finite-size effects on electronic structure and local properties in passivated AA-stacked bilayer armchair-edge graphene nanoribbons.
    Chen X; Shi Z; Xiang S; Song K; Zhou G
    J Phys Condens Matter; 2017 Mar; 29(8):085301. PubMed ID: 28000622
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Magneto-electronic properties, carrier mobility and strain effects of InSe nanoribbon.
    Li YH; Zhang ZH; Fan ZQ; Zhou RL
    J Phys Condens Matter; 2020 Jan; 32(1):015303. PubMed ID: 31499486
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tunable magnetic and electronic properties of armchair BeN
    Zhu M; Zhou W; Yang J; Zhou J; Li Q
    Phys Chem Chem Phys; 2023 Feb; 25(6):5029-5036. PubMed ID: 36722879
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analytical study on strain tunable electronic structure and optical transitions in armchair black phosphorene nanoribbons.
    Liu P; Zhou X; Xiao X; Zhou B; Zhou G
    J Phys Condens Matter; 2020 Jul; 32(28):285301. PubMed ID: 32150733
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Strain induced new phase and indirect-direct band gap transition of monolayer InSe.
    Hu T; Zhou J; Dong J
    Phys Chem Chem Phys; 2017 Aug; 19(32):21722-21728. PubMed ID: 28776623
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Water-Induced Bandgap Engineering in Nanoribbons of Hexagonal Boron Nitride.
    Chen C; Hang Y; Wang HS; Wang Y; Wang X; Jiang C; Feng Y; Liu C; Janzen E; Edgar JH; Wei Z; Guo W; Hu W; Zhang Z; Wang H; Xie X
    Adv Mater; 2023 Sep; 35(36):e2303198. PubMed ID: 37400106
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.