These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 37638457)

  • 1. Effects of end-effector robot-assisted gait training on gait ability, muscle strength, and balance in patients with spinal cord injury.
    Shin JC; Jeon HR; Kim D; Min WK; Lee JS; Cho SI; Oh DS; Yoo J
    NeuroRehabilitation; 2023; 53(3):335-346. PubMed ID: 37638457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects on the Motor Function, Proprioception, Balance, and Gait Ability of the End-Effector Robot-Assisted Gait Training for Spinal Cord Injury Patients.
    Shin JC; Jeon HR; Kim D; Cho SI; Min WK; Lee JS; Oh DS; Yoo J
    Brain Sci; 2021 Sep; 11(10):. PubMed ID: 34679346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of robotic-assisted gait training on motor function and walking ability in children with thoracolumbar incomplete spinal cord injury.
    Ma TT; Zhang Q; Zhou TT; Zhang YQ; He Y; Li SJ; Liu QJ
    NeuroRehabilitation; 2022; 51(3):499-508. PubMed ID: 35964210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Against the odds: what to expect in rehabilitation of chronic spinal cord injury with a neurologically controlled Hybrid Assistive Limb exoskeleton. A subgroup analysis of 55 patients according to age and lesion level.
    Grasmücke D; Zieriacks A; Jansen O; Fisahn C; Sczesny-Kaiser M; Wessling M; Meindl RC; Schildhauer TA; Aach M
    Neurosurg Focus; 2017 May; 42(5):E15. PubMed ID: 28463613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robot-assisted gait training (Lokomat) improves walking function and activity in people with spinal cord injury: a systematic review.
    Nam KY; Kim HJ; Kwon BS; Park JW; Lee HJ; Yoo A
    J Neuroeng Rehabil; 2017 Mar; 14(1):24. PubMed ID: 28330471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Robot-Assisted Gait Training in Individuals with Spinal Cord Injury: A Meta-analysis.
    Fang CY; Tsai JL; Li GS; Lien AS; Chang YJ
    Biomed Res Int; 2020; 2020():2102785. PubMed ID: 32280681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved Gait Speed After Robot-Assisted Gait Training in Patients With Motor Incomplete Spinal Cord Injury: A Preliminary Study.
    Hwang S; Kim HR; Han ZA; Lee BS; Kim S; Shin H; Moon JG; Yang SP; Lim MH; Cho DY; Kim H; Lee HJ
    Ann Rehabil Med; 2017 Feb; 41(1):34-41. PubMed ID: 28289633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of robot-assisted gait training on lower extremity strength, functional independence, and walking function in men with incomplete traumatic spinal cord injury.
    Mıdık M; Paker N; Buğdaycı D; Mıdık AC
    Turk J Phys Med Rehabil; 2020 Mar; 66(1):54-59. PubMed ID: 32318675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of robotic-assisted gait training in patients with incomplete spinal cord injury.
    Shin JC; Kim JY; Park HK; Kim NY
    Ann Rehabil Med; 2014 Dec; 38(6):719-25. PubMed ID: 25566469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gait ability required to achieve therapeutic effect in gait and balance function with the voluntary driven exoskeleton in patients with chronic spinal cord injury: a clinical study.
    Okawara H; Sawada T; Matsubayashi K; Sugai K; Tsuji O; Nagoshi N; Matsumoto M; Nakamura M
    Spinal Cord; 2020 May; 58(5):520-527. PubMed ID: 31831847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: a pilot study.
    Aach M; Cruciger O; Sczesny-Kaiser M; Höffken O; Meindl RCh; Tegenthoff M; Schwenkreis P; Sankai Y; Schildhauer TA
    Spine J; 2014 Dec; 14(12):2847-53. PubMed ID: 24704677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-invasive brain stimulation and robot-assisted gait training after incomplete spinal cord injury: A randomized pilot study.
    Raithatha R; Carrico C; Powell ES; Westgate PM; Chelette Ii KC; Lee K; Dunsmore L; Salles S; Sawaki L
    NeuroRehabilitation; 2016; 38(1):15-25. PubMed ID: 26889794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of robot-assisted gait training on cardiopulmonary function and lower extremity strength in individuals with spinal cord injury: A systematic review and meta-analysis.
    Wan C; Huang S; Wang X; Ge P; Wang Z; Zhang Y; Li Y; Su B
    J Spinal Cord Med; 2024 Jan; 47(1):6-14. PubMed ID: 36972206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robotic Rehabilitation in Spinal Cord Injury: A Pilot Study on End-Effectors and Neurophysiological Outcomes.
    Calabrò RS; Filoni S; Billeri L; Balletta T; Cannavò A; Militi A; Milardi D; Pignolo L; Naro A
    Ann Biomed Eng; 2021 Feb; 49(2):732-745. PubMed ID: 32918105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strength training versus robot-assisted gait training after incomplete spinal cord injury: a randomized pilot study in patients depending on walking assistance.
    Labruyère R; van Hedel HJ
    J Neuroeng Rehabil; 2014 Jan; 11():4. PubMed ID: 24401143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward improving functional recovery in spinal cord injury using robotics: a pilot study focusing on ankle rehabilitation.
    Calabrò RS; Billeri L; Ciappina F; Balletta T; Porcari B; Cannavò A; Pignolo L; Manuli A; Naro A
    Expert Rev Med Devices; 2022 Jan; 19(1):83-95. PubMed ID: 33616471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construct Validity of the Gait Deviation Index for People With Incomplete Spinal Cord Injury (GDI-SCI).
    Sinovas-Alonso I; Herrera-Valenzuela D; de-Los-Reyes-Guzmán A; Cano-de-la-Cuerda R; Del-Ama AJ; Gil-Agudo Á
    Neurorehabil Neural Repair; 2023 Oct; 37(10):705-715. PubMed ID: 37864467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lokomat robotic-assisted versus overground training within 3 to 6 months of incomplete spinal cord lesion: randomized controlled trial.
    Alcobendas-Maestro M; Esclarín-Ruz A; Casado-López RM; Muñoz-González A; Pérez-Mateos G; González-Valdizán E; Martín JL
    Neurorehabil Neural Repair; 2012; 26(9):1058-63. PubMed ID: 22699827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overground Gait Training With a Wearable Robot in Children With Cerebral Palsy: A Randomized Clinical Trial.
    Choi JY; Kim SK; Hong J; Park H; Yang SS; Park D; Song MK
    JAMA Netw Open; 2024 Jul; 7(7):e2422625. PubMed ID: 39037815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validity of the walking scale for spinal cord injury and other domains of function in a multicenter clinical trial.
    Ditunno JF; Barbeau H; Dobkin BH; Elashoff R; Harkema S; Marino RJ; Hauck WW; Apple D; Basso DM; Behrman A; Deforge D; Fugate L; Saulino M; Scott M; Chung J;
    Neurorehabil Neural Repair; 2007; 21(6):539-50. PubMed ID: 17507642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.