These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 37638534)

  • 1. Galvanic Replacement Reaction: Enabling the Creation of Active Catalytic Structures.
    Kong X; Wu H; Lu K; Zhang X; Zhu Y; Lei H
    ACS Appl Mater Interfaces; 2023 Sep; 15(35):41205-41223. PubMed ID: 37638534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal Organic Framework-Templated Chemiresistor: Sensing Type Transition from P-to-N Using Hollow Metal Oxide Polyhedron via Galvanic Replacement.
    Jang JS; Koo WT; Choi SJ; Kim ID
    J Am Chem Soc; 2017 Aug; 139(34):11868-11876. PubMed ID: 28777556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interfaces in Heterogeneous Catalysts: Advancing Mechanistic Understanding through Atomic-Scale Measurements.
    Gao W; Hood ZD; Chi M
    Acc Chem Res; 2017 Apr; 50(4):787-795. PubMed ID: 28207240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning the properties of copper-based catalysts based on molecular in situ studies of model systems.
    Stacchiola DJ
    Acc Chem Res; 2015 Jul; 48(7):2151-8. PubMed ID: 26103058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interface-confined oxide nanostructures for catalytic oxidation reactions.
    Fu Q; Yang F; Bao X
    Acc Chem Res; 2013 Aug; 46(8):1692-701. PubMed ID: 23458033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Galvanic replacement reaction: recent developments for engineering metal nanostructures towards catalytic applications.
    da Silva AGM; Rodrigues TS; Haigh SJ; Camargo PHC
    Chem Commun (Camb); 2017 Jun; 53(53):7135-7148. PubMed ID: 28537291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the Chemical Reactivity of Gallium Liquid Metal Nanoparticles in Galvanic Replacement.
    Castilla-Amorós L; Stoian D; Pankhurst JR; Varandili SB; Buonsanti R
    J Am Chem Soc; 2020 Nov; 142(45):19283-19290. PubMed ID: 33135885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preventing the Galvanic Replacement Reaction toward Unconventional Bimetallic Core-Shell Nanostructures.
    Liu K; Qiao Z; Gao C
    Molecules; 2023 Jul; 28(15):. PubMed ID: 37570689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile Synthesis of Highly Dispersed and Well-Alloyed Bimetallic Nanoparticles on Oxide Support.
    Qiu YP; Shi Q; Wang WZ; Xia SH; Dai H; Yin H; Yang ZQ; Wang P
    Small; 2022 Oct; 18(43):e2106143. PubMed ID: 35199957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Galvanic Replacement Synthesis of Metal Nanostructures: Bridging the Gap between Chemical and Electrochemical Approaches.
    Cheng H; Wang C; Qin D; Xia Y
    Acc Chem Res; 2023 Apr; 56(7):900-909. PubMed ID: 36966410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tailoring Morphology and Elemental Distribution of Cu-In Nanocrystals via Galvanic Replacement.
    Castilla-Amorós L; Schouwink P; Oveisi E; Okatenko V; Buonsanti R
    J Am Chem Soc; 2022 Oct; 144(40):18286-18295. PubMed ID: 36173602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inverse iron oxide/metal catalysts from galvanic replacement.
    Zhu Y; Zhang X; Koh K; Kovarik L; Fulton JL; Rosso KM; Gutiérrez OY
    Nat Commun; 2020 Jun; 11(1):3269. PubMed ID: 32601487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chirality Transfer in Galvanic Replacement Reactions.
    Liu J; Ni Z; Nandi P; Mirsaidov U; Huang Z
    Nano Lett; 2019 Oct; 19(10):7427-7433. PubMed ID: 31536361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal hybrid nanoparticles for catalytic organic and photochemical transformations.
    Song H
    Acc Chem Res; 2015 Mar; 48(3):491-9. PubMed ID: 25730414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Galvanic synthesis of three-dimensional and hollow metallic nanostructures.
    Park SH; Son JG; Lee TG; Kim J; Han SY; Park HM; Song JY
    Nanoscale Res Lett; 2014 Dec; 9(1):2403. PubMed ID: 26088979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of small Ni-core-Au-shell catalytic nanoparticles on TiO
    Reboul J; Li ZY; Yuan J; Nakatsuka K; Saito M; Mori K; Yamashita H; Xia Y; Louis C
    Nanoscale Adv; 2021 Feb; 3(3):823-835. PubMed ID: 36133853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Palladium-rich plasmonic nanorattles with enhanced LSPRs
    Ivanchenko M; Evangelista AJ; Jing H
    RSC Adv; 2021 Dec; 11(63):40112-40119. PubMed ID: 35494128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tailoring galvanic replacement reaction for the preparation of Pt/Ag bimetallic hollow nanostructures with controlled number of voids.
    Zhang W; Yang J; Lu X
    ACS Nano; 2012 Aug; 6(8):7397-405. PubMed ID: 22804563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spongelike nanoporous Pd and Pd/Au structures: facile synthesis and enhanced electrocatalytic activity.
    Son J; Cho S; Lee C; Lee Y; Shim JH
    Langmuir; 2014 Apr; 30(12):3579-88. PubMed ID: 24617746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Galvanic Replacement-Mediated Synthesis of Ni-Supported Pd Nanoparticles with Strong Metal-Support Interaction for Methanol Electro-oxidation.
    Lei H; Li X; Sun C; Zeng J; Siwal SS; Zhang Q
    Small; 2019 Mar; 15(11):e1804722. PubMed ID: 30735296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.