These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 37638558)

  • 1. RNA tertiary structure modeling with BRiQ potential in CASP15.
    Chen K; Zhou Y; Wang S; Xiong P
    Proteins; 2023 Dec; 91(12):1771-1778. PubMed ID: 37638558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of three-dimensional RNA structure prediction in CASP15.
    Das R; Kretsch RC; Simpkin AJ; Mulvaney T; Pham P; Rangan R; Bu F; Keegan RM; Topf M; Rigden DJ; Miao Z; Westhof E
    Proteins; 2023 Dec; 91(12):1747-1770. PubMed ID: 37876231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrating deep learning, threading alignments, and a multi-MSA strategy for high-quality protein monomer and complex structure prediction in CASP15.
    Zheng W; Wuyun Q; Freddolino PL; Zhang Y
    Proteins; 2023 Dec; 91(12):1684-1703. PubMed ID: 37650367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constructing effective energy functions for protein structure prediction through broadening attraction-basin and reverse Monte Carlo sampling.
    Wang C; Wei Y; Zhang H; Kong L; Sun S; Zheng WM; Bu D
    BMC Bioinformatics; 2019 Mar; 20(Suppl 3):135. PubMed ID: 30925867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA folding kinetics using Monte Carlo and Gillespie algorithms.
    Clote P; Bayegan AH
    J Math Biol; 2018 Apr; 76(5):1195-1227. PubMed ID: 28780735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SimRNA: a coarse-grained method for RNA folding simulations and 3D structure prediction.
    Boniecki MJ; Lach G; Dawson WK; Tomala K; Lukasz P; Soltysinski T; Rother KM; Bujnicki JM
    Nucleic Acids Res; 2016 Apr; 44(7):e63. PubMed ID: 26687716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of three-dimensional RNA structure prediction in CASP15.
    Das R; Kretsch RC; Simpkin AJ; Mulvaney T; Pham P; Rangan R; Bu F; Keegan RM; Topf M; Rigden DJ; Miao Z; Westhof E
    bioRxiv; 2023 Oct; ():. PubMed ID: 37162955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Novel Method Using Abstract Convex Underestimation in Ab-Initio Protein Structure Prediction for Guiding Search in Conformational Feature Space.
    Hao XH; Zhang GJ; Zhou XG; Yu XF
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(5):887-900. PubMed ID: 26552093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved prediction of RNA tertiary structure with insights into native state dynamics.
    Bida JP; Maher LJ
    RNA; 2012 Mar; 18(3):385-93. PubMed ID: 22279150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo sampling algorithm for searching a scale-transformed energy space of polypeptides.
    Nakamura H
    J Comput Chem; 2002 Mar; 23(4):511-6. PubMed ID: 11908088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA inverse folding using Monte Carlo tree search.
    Yang X; Yoshizoe K; Taneda A; Tsuda K
    BMC Bioinformatics; 2017 Nov; 18(1):468. PubMed ID: 29110632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using the multi-objective optimization replica exchange Monte Carlo enhanced sampling method for protein-small molecule docking.
    Wang H; Liu H; Cai L; Wang C; Lv Q
    BMC Bioinformatics; 2017 Jul; 18(1):327. PubMed ID: 28693470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic Monte Carlo simulations of globular protein folding/unfolding pathways. I. Six-member, Greek key beta-barrel proteins.
    Skolnick J; Kolinski A
    J Mol Biol; 1990 Apr; 212(4):787-817. PubMed ID: 2329583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SimRNAweb: a web server for RNA 3D structure modeling with optional restraints.
    Magnus M; Boniecki MJ; Dawson W; Bujnicki JM
    Nucleic Acids Res; 2016 Jul; 44(W1):W315-9. PubMed ID: 27095203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generalized protein structure prediction based on combination of fold-recognition with de novo folding and evaluation of models.
    KoliƄski A; Bujnicki JM
    Proteins; 2005; 61 Suppl 7():84-90. PubMed ID: 16187348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling of Three-Dimensional RNA Structures Using SimRNA.
    Wirecki TK; Nithin C; Mukherjee S; Bujnicki JM; Boniecki MJ
    Methods Mol Biol; 2020; 2165():103-125. PubMed ID: 32621221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ant colony optimization for predicting RNA folding pathways.
    Takitou S; Taneda A
    Comput Biol Chem; 2019 Dec; 83():107118. PubMed ID: 31698162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of low-energy structures of a small RNA hairpin using Monte Carlo-based techniques.
    Shanker S; Bandyopadhyay P
    J Biosci; 2012 Jul; 37(3):533-8. PubMed ID: 22750989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of RNA secondary structure based on helical regions distribution.
    WuJu L; JiaJin W
    Bioinformatics; 1998; 14(8):700-6. PubMed ID: 9790689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNA tertiary structure prediction in CASP15 by the GeneSilico group: Folding simulations based on statistical potentials and spatial restraints.
    Baulin EF; Mukherjee S; Moafinejad SN; Wirecki TK; Badepally NG; Jaryani F; Stefaniak F; Amiri Farsani M; Ray A; Rocha de Moura T; Bujnicki JM
    Proteins; 2023 Dec; 91(12):1800-1810. PubMed ID: 37622458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.