BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 37639066)

  • 41. Leukocyte telomere length and amyotrophic lateral sclerosis: a Mendelian randomization study.
    Xia K; Zhang L; Zhang G; Wang Y; Huang T; Fan D
    Orphanet J Rare Dis; 2021 Dec; 16(1):508. PubMed ID: 34906191
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Shared polygenic risk and causal inferences in amyotrophic lateral sclerosis.
    Bandres-Ciga S; Noyce AJ; Hemani G; Nicolas A; Calvo A; Mora G; ; ; Tienari PJ; Stone DJ; Nalls MA; Singleton AB; ChiĆ² A; Traynor BJ
    Ann Neurol; 2019 Apr; 85(4):470-481. PubMed ID: 30723964
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An Integrative Transcriptome-Wide Analysis of Amyotrophic Lateral Sclerosis for the Identification of Potential Genetic Markers and Drug Candidates.
    Park S; Kim D; Song J; Joo JWJ
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33809961
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identifying novel proteins underlying loneliness by integrating GWAS summary data with human brain proteomes.
    Gu X; Dou M; Yuan M; Zhang W
    Neuropsychopharmacology; 2023 Jun; 48(7):1087-1097. PubMed ID: 36755143
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Genetic Modifiers of Age at Onset for Amyotrophic Lateral Sclerosis: A Genome-Wide Association Study.
    Li C; Lin J; Jiang Q; Yang T; Xiao Y; Huang J; Hou Y; Wei Q; Cui Y; Wang S; Zheng X; Ou R; Liu K; Chen X; Song W; Zhao B; Shang H
    Ann Neurol; 2023 Nov; 94(5):933-941. PubMed ID: 37528491
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evaluating the causal association between microRNAs and amyotrophic lateral sclerosis.
    Zhu Y; Li M; He Z; Pang X; Du R; Yu W; Zhang J; Bai J; Wang J; Huang X
    Neurol Sci; 2023 Oct; 44(10):3567-3575. PubMed ID: 37261630
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Genetically predicted coffee consumption and amyotrophic lateral sclerosis.
    Zhang Z; Wang M; Liu X
    Amyotroph Lateral Scler Frontotemporal Degener; 2022 Nov; 23(7-8):575-579. PubMed ID: 35254179
    [No Abstract]   [Full Text] [Related]  

  • 48. Physical activity and amyotrophic lateral sclerosis: a Mendelian randomization study.
    Zhang G; Zhang L; Tang L; Xia K; Huang T; Fan D
    Neurobiol Aging; 2021 Sep; 105():374.e1-374.e4. PubMed ID: 34023151
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The genetic structure of pain in depression patients: A genome-wide association study and proteome-wide association study.
    Zhang Z; Liu L; Zhang H; Li C; Chen Y; Zhang J; Pan C; Cheng S; Yang X; Meng P; Yao Y; Jia Y; Wen Y; Zhang F
    J Psychiatr Res; 2022 Dec; 156():547-556. PubMed ID: 36368244
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Genotype-property patient-phenotype relations suggest that proteome exhaustion can cause amyotrophic lateral sclerosis.
    Kepp KP
    PLoS One; 2015; 10(3):e0118649. PubMed ID: 25798606
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Single-cell RNA-seq analysis of the brainstem of mutant SOD1 mice reveals perturbed cell types and pathways of amyotrophic lateral sclerosis.
    Liu W; Venugopal S; Majid S; Ahn IS; Diamante G; Hong J; Yang X; Chandler SH
    Neurobiol Dis; 2020 Jul; 141():104877. PubMed ID: 32360664
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sarm1 deletion suppresses TDP-43-linked motor neuron degeneration and cortical spine loss.
    White MA; Lin Z; Kim E; Henstridge CM; Pena Altamira E; Hunt CK; Burchill E; Callaghan I; Loreto A; Brown-Wright H; Mead R; Simmons C; Cash D; Coleman MP; Sreedharan J
    Acta Neuropathol Commun; 2019 Oct; 7(1):166. PubMed ID: 31661035
    [TBL] [Abstract][Full Text] [Related]  

  • 53. SRSF1-dependent inhibition of C9ORF72-repeat RNA nuclear export: genome-wide mechanisms for neuroprotection in amyotrophic lateral sclerosis.
    Castelli LM; Cutillo L; Souza CDS; Sanchez-Martinez A; Granata I; Lin YH; Myszczynska MA; Heath PR; Livesey MR; Ning K; Azzouz M; Shaw PJ; Guarracino MR; Whitworth AJ; Ferraiuolo L; Milo M; Hautbergue GM
    Mol Neurodegener; 2021 Aug; 16(1):53. PubMed ID: 34376242
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Genome-wide analysis of the heritability of amyotrophic lateral sclerosis.
    Keller MF; Ferrucci L; Singleton AB; Tienari PJ; Laaksovirta H; Restagno G; ChiĆ² A; Traynor BJ; Nalls MA
    JAMA Neurol; 2014 Sep; 71(9):1123-34. PubMed ID: 25023141
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Constitutively active SARM1 variants that induce neuropathy are enriched in ALS patients.
    Bloom AJ; Mao X; Strickland A; Sasaki Y; Milbrandt J; DiAntonio A
    Mol Neurodegener; 2022 Jan; 17(1):1. PubMed ID: 34991663
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mendelian randomization and genetic colocalization infer the effects of the multi-tissue proteome on 211 complex disease-related phenotypes.
    Yang C; Fagan AM; Perrin RJ; Rhinn H; Harari O; Cruchaga C
    Genome Med; 2022 Dec; 14(1):140. PubMed ID: 36510323
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Genetic factors affecting survival in Japanese patients with sporadic amyotrophic lateral sclerosis: a genome-wide association study and verification in iPSC-derived motor neurons from patients.
    Nakamura R; Tohnai G; Nakatochi M; Atsuta N; Watanabe H; Ito D; Katsuno M; Hirakawa A; Izumi Y; Morita M; Hirayama T; Kano O; Kanai K; Hattori N; Taniguchi A; Suzuki N; Aoki M; Iwata I; Yabe I; Shibuya K; Kuwabara S; Oda M; Hashimoto R; Aiba I; Ishihara T; Onodera O; Yamashita T; Abe K; Mizoguchi K; Shimizu T; Ikeda Y; Yokota T; Hasegawa K; Tanaka F; Nakashima K; Kaji R; Niwa JI; Doyu M; Terao C; Ikegawa S; Fujimori K; Nakamura S; Ozawa F; Morimoto S; Onodera K; Ito T; Okada Y; Okano H; Sobue G;
    J Neurol Neurosurg Psychiatry; 2023 Oct; 94(10):816-824. PubMed ID: 37142397
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Identification of novel proteins for lacunar stroke by integrating genome-wide association data and human brain proteomes.
    Zhang C; Qin F; Li X; Du X; Li T
    BMC Med; 2022 Jun; 20(1):211. PubMed ID: 35733147
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Loss of Sarm1 does not suppress motor neuron degeneration in the SOD1G93A mouse model of amyotrophic lateral sclerosis.
    Peters OM; Lewis EA; Osterloh JM; Weiss A; Salameh JS; Metterville J; Brown RH; Freeman MR
    Hum Mol Genet; 2018 Nov; 27(21):3761-3771. PubMed ID: 30010873
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Spatial transcriptomics identifies spatially dysregulated expression of GRM3 and USP47 in amyotrophic lateral sclerosis.
    Gregory JM; McDade K; Livesey MR; Croy I; Marion de Proce S; Aitman T; Chandran S; Smith C
    Neuropathol Appl Neurobiol; 2020 Aug; 46(5):441-457. PubMed ID: 31925813
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.