BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 37639166)

  • 1. Zinc Oxide Nanoparticles and Cancer Chemotherapy: Helpful Tools for Enhancing Chemo-sensitivity and Reducing Side Effects?
    Vaghari-Tabari M; Jafari-Gharabaghlou D; Mohammadi M; Hashemzadeh MS
    Biol Trace Elem Res; 2024 May; 202(5):1878-1900. PubMed ID: 37639166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement of conventional anti-cancer drugs as new tools against multidrug resistant tumors.
    Dallavalle S; Dobričić V; Lazzarato L; Gazzano E; Machuqueiro M; Pajeva I; Tsakovska I; Zidar N; Fruttero R
    Drug Resist Updat; 2020 May; 50():100682. PubMed ID: 32087558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zinc oxide nanoparticles: A comprehensive review on its synthesis, anticancer and drug delivery applications as well as health risks.
    Singh TA; Das J; Sil PC
    Adv Colloid Interface Sci; 2020 Dec; 286():102317. PubMed ID: 33212389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overcoming drug efflux-based multidrug resistance in cancer with nanotechnology.
    Xue X; Liang XJ
    Chin J Cancer; 2012 Feb; 31(2):100-9. PubMed ID: 22237039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy.
    Pérez-Herrero E; Fernández-Medarde A
    Eur J Pharm Biopharm; 2015 Jun; 93():52-79. PubMed ID: 25813885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zinc overload mediated by zinc oxide nanoparticles as innovative anti-tumor agent.
    Wiesmann N; Kluenker M; Demuth P; Brenner W; Tremel W; Brieger J
    J Trace Elem Med Biol; 2019 Jan; 51():226-234. PubMed ID: 30115501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multidrug resistance: retrospect and prospects in anti-cancer drug treatment.
    Pérez-Tomás R
    Curr Med Chem; 2006; 13(16):1859-76. PubMed ID: 16842198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of ABC transporters in cancer chemotherapy.
    Sun YL; Patel A; Kumar P; Chen ZS
    Chin J Cancer; 2012 Feb; 31(2):51-7. PubMed ID: 22257384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Approaches for reducing chemo/radiation-induced cardiotoxicity by nanoparticles.
    Li K; Chen W; Ma L; Yan L; Wang B
    Environ Res; 2024 Mar; 244():117264. PubMed ID: 37776941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATP-binding cassette transporters in tumor endothelial cells and resistance to metronomic chemotherapy.
    Hida K; Kikuchi H; Maishi N; Hida Y
    Cancer Lett; 2017 Aug; 400():305-310. PubMed ID: 28216371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. β-carotene reverses multidrug resistant cancer cells by selectively modulating human P-glycoprotein function.
    Teng YN; Sheu MJ; Hsieh YW; Wang RY; Chiang YC; Hung CC
    Phytomedicine; 2016 Mar; 23(3):316-23. PubMed ID: 26969385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of integrated cancer nanomedicine in overcoming drug resistance.
    Iyer AK; Singh A; Ganta S; Amiji MM
    Adv Drug Deliv Rev; 2013 Nov; 65(13-14):1784-802. PubMed ID: 23880506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Doxorubicin and folic acid-loaded zinc oxide nanoparticles-based combined anti-tumor and anti-inflammatory approach for enhanced anti-cancer therapy.
    Gomaa S; Nassef M; Tabl G; Zaki S; Abdel-Ghany A
    BMC Cancer; 2024 Jan; 24(1):34. PubMed ID: 38178054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of ceritinib (LDK378) on enhancement of chemotherapeutic agents in ABCB1 and ABCG2 overexpressing cells in vitro and in vivo.
    Hu J; Zhang X; Wang F; Wang X; Yang K; Xu M; To KK; Li Q; Fu L
    Oncotarget; 2015 Dec; 6(42):44643-59. PubMed ID: 26556876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Berberine and zinc oxide-based nanoparticles for the chemo-photothermal therapy of lung adenocarcinoma.
    Kim S; Lee SY; Cho HJ
    Biochem Biophys Res Commun; 2018 Jun; 501(3):765-770. PubMed ID: 29758197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing tumor chemotherapy and overcoming drug resistance through autophagy-mediated intracellular dissolution of zinc oxide nanoparticles.
    Hu Y; Zhang HR; Dong L; Xu MR; Zhang L; Ding WP; Zhang JQ; Lin J; Zhang YJ; Qiu BS; Wei PF; Wen LP
    Nanoscale; 2019 Jun; 11(24):11789-11807. PubMed ID: 31184642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zinc oxide nanoparticles for therapeutic purposes in cancer medicine.
    Wiesmann N; Tremel W; Brieger J
    J Mater Chem B; 2020 Jun; 8(23):4973-4989. PubMed ID: 32427264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Anticancer drugs and ABC transporters].
    Oka M; Fukuda M; Soda H
    Gan To Kagaku Ryoho; 2005 May; 32(5):585-92. PubMed ID: 15918555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of arrays to investigate the contribution of ATP-binding cassette transporters to drug resistance in cancer chemotherapy and prediction of chemosensitivity.
    Zhang JT
    Cell Res; 2007 Apr; 17(4):311-23. PubMed ID: 17404598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of non-coding RNAs in ABC transporters regulation and their clinical implications of multidrug resistance in cancer.
    Wang Y; Wang Y; Qin Z; Cai S; Yu L; Hu H; Zeng S
    Expert Opin Drug Metab Toxicol; 2021 Mar; 17(3):291-306. PubMed ID: 33544643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.