These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 37639419)

  • 1. Exploring Visual-Auditory Redirected Walking Using Auditory Cues in Reality.
    Ogawa K; Fujita K; Sakamoto S; Takashima K; Kitamura Y
    IEEE Trans Vis Comput Graph; 2024 Aug; 30(8):5782-5794. PubMed ID: 37639419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of spatial auditory landmarks on ambulation.
    Karim AM; Rumalla K; King LA; Hullar TE
    Gait Posture; 2018 Feb; 60():171-174. PubMed ID: 29241100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frequency-dependent integration of auditory and vestibular cues for self-motion perception.
    Shayman CS; Peterka RJ; Gallun FJ; Oh Y; Chang NN; Hullar TE
    J Neurophysiol; 2020 Mar; 123(3):936-944. PubMed ID: 31940239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship between postural stability and spatial hearing.
    Zhong X; Yost WA
    J Am Acad Audiol; 2013 Oct; 24(9):782-8. PubMed ID: 24224986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential Adaptation in Azimuth and Elevation to Acute Monaural Spatial Hearing after Training with Visual Feedback.
    Zonooz B; Van Opstal AJ
    eNeuro; 2019; 6(6):. PubMed ID: 31601632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for cue-independent spatial representation in the human auditory cortex during active listening.
    Higgins NC; McLaughlin SA; Rinne T; Stecker GC
    Proc Natl Acad Sci U S A; 2017 Sep; 114(36):E7602-E7611. PubMed ID: 28827357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reaching to sounds in virtual reality: A multisensory-motor approach to promote adaptation to altered auditory cues.
    Valzolgher C; Verdelet G; Salemme R; Lombardi L; Gaveau V; Farné A; Pavani F
    Neuropsychologia; 2020 Dec; 149():107665. PubMed ID: 33130161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the Impact of Head-Body Rotations on Audio-Visual Spatial Perception for Virtual Reality Applications.
    Bernal-Berdun E; Vallejo M; Sun Q; Serrano A; Gutierrez D
    IEEE Trans Vis Comput Graph; 2024 May; 30(5):2624-2632. PubMed ID: 38446650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Effect of Sound Localization on Auditory-Only and Audiovisual Speech Recognition in a Simulated Multitalker Environment.
    Sheffield SW; Wheeler HJ; Brungart DS; Bernstein JGW
    Trends Hear; 2023; 27():23312165231186040. PubMed ID: 37415497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benefits of active listening during 3D sound localization.
    Gaveau V; Coudert A; Salemme R; Koun E; Desoche C; Truy E; Farnè A; Pavani F
    Exp Brain Res; 2022 Nov; 240(11):2817-2833. PubMed ID: 36071210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sound source localization with varying amount of visual information in virtual reality.
    Ahrens A; Lund KD; Marschall M; Dau T
    PLoS One; 2019; 14(3):e0214603. PubMed ID: 30925174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Effect of Walking on Auditory Localization, Visual Discrimination, and Aurally Aided Visual Search.
    Brungart DS; Kruger SE; Kwiatkowski T; Heil T; Cohen J
    Hum Factors; 2019 Sep; 61(6):976-991. PubMed ID: 30870052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of spectral modulation cues in virtual sound localization.
    Qian J; Eddins DA
    J Acoust Soc Am; 2008 Jan; 123(1):302-14. PubMed ID: 18177160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The impact of temporal fine structure and signal envelope on auditory motion perception.
    Warnecke M; Peng ZE; Litovsky RY
    PLoS One; 2020; 15(8):e0238125. PubMed ID: 32822439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward Sound Localization Testing in Virtual Reality to Aid in the Screening of Auditory Processing Disorders.
    Ramírez M; Arend JM; von Gablenz P; Liesefeld HR; Pörschmann C
    Trends Hear; 2024; 28():23312165241235463. PubMed ID: 38425297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Re-weighting of Sound Localization Cues by Audiovisual Training.
    Kumpik DP; Campbell C; Schnupp JWH; King AJ
    Front Neurosci; 2019; 13():1164. PubMed ID: 31802997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adapting to altered auditory cues: Generalization from manual reaching to head pointing.
    Valzolgher C; Todeschini M; Verdelet G; Gatel J; Salemme R; Gaveau V; Truy E; Farnè A; Pavani F
    PLoS One; 2022; 17(4):e0263509. PubMed ID: 35421095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of responding by the location of sound: role of binaural cues.
    Burlile CJ; Feldman ML; Craig C; Harrison JM
    J Exp Anal Behav; 1985 May; 43(3):315-9. PubMed ID: 4020321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visual capture of gait during redirected walking.
    Rothacher Y; Nguyen A; Lenggenhager B; Kunz A; Brugger P
    Sci Rep; 2018 Dec; 8(1):17974. PubMed ID: 30568182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visual sensitivity is a stronger determinant of illusory processes than auditory cue parameters in the sound-induced flash illusion.
    Kumpik DP; Roberts HE; King AJ; Bizley JK
    J Vis; 2014 Jun; 14(7):. PubMed ID: 24961249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.