These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 37639564)

  • 1. Steering the Dynamics of Reaction Intermediates and Catalyst Surface during Electrochemical Pulsed CO
    Li Z; Wang L; Wang T; Sun L; Yang W
    J Am Chem Soc; 2023 Sep; 145(37):20655-20664. PubMed ID: 37639564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure- and Electrolyte-Sensitivity in CO
    Arán-Ais RM; Gao D; Roldan Cuenya B
    Acc Chem Res; 2018 Nov; 51(11):2906-2917. PubMed ID: 30335937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Guiding CO
    Banerjee S; Gerke CS; Thoi VS
    Acc Chem Res; 2022 Feb; 55(4):504-515. PubMed ID: 35119260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cu(I) Reducibility Controls Ethylene vs Ethanol Selectivity on (100)-Textured Copper during Pulsed CO
    Tang Z; Nishiwaki E; Fritz KE; Hanrath T; Suntivich J
    ACS Appl Mater Interfaces; 2021 Mar; 13(12):14050-14055. PubMed ID: 33705088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selectivity in Electrochemical CO
    Saha P; Amanullah S; Dey A
    Acc Chem Res; 2022 Jan; 55(2):134-144. PubMed ID: 34989553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering Surface Oxophilicity of Copper for Electrochemical CO
    Li M; Song N; Luo W; Chen J; Jiang W; Yang J
    Adv Sci (Weinh); 2023 Jan; 10(2):e2204579. PubMed ID: 36394094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selectivity Control of Cu Nanocrystals in a Gas-Fed Flow Cell through CO
    Jeon HS; Timoshenko J; Rettenmaier C; Herzog A; Yoon A; Chee SW; Oener S; Hejral U; Haase FT; Roldan Cuenya B
    J Am Chem Soc; 2021 May; 143(19):7578-7587. PubMed ID: 33956433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalyst Design for Electrochemical Reduction of CO
    Xue Y; Guo Y; Cui H; Zhou Z
    Small Methods; 2021 Oct; 5(10):e2100736. PubMed ID: 34927943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical Carbon Dioxide Reduction to Ethylene: From Mechanistic Understanding to Catalyst Surface Engineering.
    Qu J; Cao X; Gao L; Li J; Li L; Xie Y; Zhao Y; Zhang J; Wu M; Liu H
    Nanomicro Lett; 2023 Jul; 15(1):178. PubMed ID: 37433948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Architectural Design for Enhanced C
    Xiao C; Zhang J
    ACS Nano; 2021 May; 15(5):7975-8000. PubMed ID: 33956440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asymmetric Low-Frequency Pulsed Strategy Enables Ultralong CO
    Zhang XD; Liu T; Liu C; Zheng DS; Huang JM; Liu QW; Yuan WW; Yin Y; Huang LR; Xu M; Li Y; Gu ZY
    J Am Chem Soc; 2023 Feb; 145(4):2195-2206. PubMed ID: 36629383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tailoring Copper Nanocrystals towards C2 Products in Electrochemical CO2 Reduction.
    Loiudice A; Lobaccaro P; Kamali EA; Thao T; Huang BH; Ager JW; Buonsanti R
    Angew Chem Int Ed Engl; 2016 May; 55(19):5789-92. PubMed ID: 27059162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative Spectroscopic Study Revealing Why the CO
    El-Nagar GA; Yang F; Stojkovikj S; Mebs S; Gupta S; Ahmet IY; Dau H; Mayer MT
    ACS Catal; 2022 Dec; 12(24):15576-15589. PubMed ID: 36590316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the Dynamics of Low-Overpotential CO
    de Ruiter J; An H; Wu L; Gijsberg Z; Yang S; Hartman T; Weckhuysen BM; van der Stam W
    J Am Chem Soc; 2022 Aug; 144(33):15047-15058. PubMed ID: 35951390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hetero-Interfaces on Cu Electrode for Enhanced Electrochemical Conversion of CO
    Li X; Wang J; Lv X; Yang Y; Xu Y; Liu Q; Wu HB
    Nanomicro Lett; 2022 Jun; 14(1):134. PubMed ID: 35699835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphdiyne supported Ag-Cu tandem catalytic scheme for electrocatalytic reduction of CO
    Zhu Q; Hu Y; Chen H; Meng C; Shang Y; Hao C; Wei S; Wang Z; Lu X; Liu S
    Nanoscale; 2023 Feb; 15(5):2106-2113. PubMed ID: 36648138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic Surface Reconstruction of Amphoteric Metal (Zn, Al) Doped Cu
    Jia Y; Ding Y; Song T; Xu Y; Li Y; Duan L; Li F; Sun L; Fan K
    Adv Sci (Weinh); 2023 Oct; 10(28):e2303726. PubMed ID: 37530207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanograin-Boundary-Abundant Cu
    Wu Q; Du R; Wang P; Waterhouse GIN; Li J; Qiu Y; Yan K; Zhao Y; Zhao WW; Tsai HJ; Chen MC; Hung SF; Wang X; Chen G
    ACS Nano; 2023 Jul; 17(13):12884-12894. PubMed ID: 37339159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enrichment of reactants and intermediates for electrocatalytic CO
    Yang PP; Gao MR
    Chem Soc Rev; 2023 Jul; 52(13):4343-4380. PubMed ID: 37318005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of the Degradation Mechanisms of Cu Electrodes during the CO
    Mom RV; Sandoval-Diaz LE; Gao D; Chuang CH; Carbonio EA; Jones TE; Arrigo R; Ivanov D; Hävecker M; Roldan Cuenya B; Schlögl R; Lunkenbein T; Knop-Gericke A; Velasco-Vélez JJ
    ACS Appl Mater Interfaces; 2023 Jun; 15(25):30052-30059. PubMed ID: 37318204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.