These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
356 related articles for article (PubMed ID: 37639715)
1. Elastomeric Polyesters in Cardiovascular Tissue Engineering and Organs-on-a-Chip. Okhovatian S; Shakeri A; Davenport Huyer L; Radisic M Biomacromolecules; 2023 Nov; 24(11):4511-4531. PubMed ID: 37639715 [TBL] [Abstract][Full Text] [Related]
2. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering. Ahadian S; Davenport Huyer L; Estili M; Yee B; Smith N; Xu Z; Sun Y; Radisic M Acta Biomater; 2017 Apr; 52():81-91. PubMed ID: 27940161 [TBL] [Abstract][Full Text] [Related]
3. One-Pot Synthesis of Unsaturated Polyester Bioelastomer with Controllable Material Curing for Microscale Designs. Davenport Huyer L; Bannerman AD; Wang Y; Savoji H; Knee-Walden EJ; Brissenden A; Yee B; Shoaib M; Bobicki E; Amsden BG; Radisic M Adv Healthc Mater; 2019 Aug; 8(16):e1900245. PubMed ID: 31313890 [TBL] [Abstract][Full Text] [Related]
4. Recent Progress in Advanced Polyester Elastomers for Tissue Engineering and Bioelectronics. Zhao Y; Zhong W Molecules; 2023 Dec; 28(24):. PubMed ID: 38138515 [TBL] [Abstract][Full Text] [Related]
5. Architectured helically coiled scaffolds from elastomeric poly(butylene succinate) (PBS) copolyester via wet electrospinning. Sonseca A; Sahay R; Stepien K; Bukala J; Wcislek A; McClain A; Sobolewski P; Sui X; Puskas JE; Kohn J; Wagner HD; El Fray M Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110505. PubMed ID: 31923996 [TBL] [Abstract][Full Text] [Related]
6. Polyester elastomers for soft tissue engineering. Ye H; Zhang K; Kai D; Li Z; Loh XJ Chem Soc Rev; 2018 Jun; 47(12):4545-4580. PubMed ID: 29722412 [TBL] [Abstract][Full Text] [Related]
7. A bilayered elastomeric scaffold for tissue engineering of small diameter vascular grafts. Soletti L; Hong Y; Guan J; Stankus JJ; El-Kurdi MS; Wagner WR; Vorp DA Acta Biomater; 2010 Jan; 6(1):110-22. PubMed ID: 19540370 [TBL] [Abstract][Full Text] [Related]
8. Development of an in-process UV-crosslinked, electrospun PCL/aPLA-co-TMC composite polymer for tubular tissue engineering applications. Stefani I; Cooper-White JJ Acta Biomater; 2016 May; 36():231-40. PubMed ID: 26969522 [TBL] [Abstract][Full Text] [Related]
9. Crosslinked urethane doped polyester biphasic scaffolds: Potential for in vivo vascular tissue engineering. Dey J; Xu H; Nguyen KT; Yang J J Biomed Mater Res A; 2010 Nov; 95(2):361-70. PubMed ID: 20629026 [TBL] [Abstract][Full Text] [Related]
10. Current state of fabrication technologies and materials for bone tissue engineering. Wubneh A; Tsekoura EK; Ayranci C; Uludağ H Acta Biomater; 2018 Oct; 80():1-30. PubMed ID: 30248515 [TBL] [Abstract][Full Text] [Related]
11. Biodegradable and biomimetic elastomeric scaffolds for tissue-engineered heart valves. Xue Y; Sant V; Phillippi J; Sant S Acta Biomater; 2017 Jan; 48():2-19. PubMed ID: 27780764 [TBL] [Abstract][Full Text] [Related]
12. Biodegradable polyester elastomers in tissue engineering. Webb AR; Yang J; Ameer GA Expert Opin Biol Ther; 2004 Jun; 4(6):801-12. PubMed ID: 15174963 [TBL] [Abstract][Full Text] [Related]
13. Mechanically tissue-like elastomeric polymers and their potential as a vehicle to deliver functional cardiomyocytes. Xu B; Li Y; Fang X; Thouas GA; Cook WD; Newgreen DF; Chen Q J Mech Behav Biomed Mater; 2013 Dec; 28():354-65. PubMed ID: 24125905 [TBL] [Abstract][Full Text] [Related]
14. Pair of Functional Polyesters That Are Photo-Cross-Linkable and Electrospinnable to Engineer Elastomeric Scaffolds with Tunable Structure and Properties. Ding X; Zhang Z; Kluka C; Asim S; Manuel J; Lee BP; Jiang J; Heiden PA; Heldt CL; Rizwan M ACS Appl Bio Mater; 2024 Feb; 7(2):863-878. PubMed ID: 38207114 [TBL] [Abstract][Full Text] [Related]
15. Biodegradable polyurethane ureas with variable polyester or polycarbonate soft segments: effects of crystallinity, molecular weight, and composition on mechanical properties. Ma Z; Hong Y; Nelson DM; Pichamuthu JE; Leeson CE; Wagner WR Biomacromolecules; 2011 Sep; 12(9):3265-74. PubMed ID: 21755999 [TBL] [Abstract][Full Text] [Related]
16. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Xu T; Binder KW; Albanna MZ; Dice D; Zhao W; Yoo JJ; Atala A Biofabrication; 2013 Mar; 5(1):015001. PubMed ID: 23172542 [TBL] [Abstract][Full Text] [Related]
18. 3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties. Moroni L; de Wijn JR; van Blitterswijk CA Biomaterials; 2006 Mar; 27(7):974-85. PubMed ID: 16055183 [TBL] [Abstract][Full Text] [Related]
19. Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds for bone and osteochondral tissue engineering. Bittner SM; Smith BT; Diaz-Gomez L; Hudgins CD; Melchiorri AJ; Scott DW; Fisher JP; Mikos AG Acta Biomater; 2019 May; 90():37-48. PubMed ID: 30905862 [TBL] [Abstract][Full Text] [Related]
20. Melt Electrospinning Writing of Poly-Hydroxymethylglycolide-co-ε-Caprolactone-Based Scaffolds for Cardiac Tissue Engineering. Castilho M; Feyen D; Flandes-Iparraguirre M; Hochleitner G; Groll J; Doevendans PAF; Vermonden T; Ito K; Sluijter JPG; Malda J Adv Healthc Mater; 2017 Sep; 6(18):. PubMed ID: 28699224 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]