These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 37639869)
21. A novel SERS method for the detection of Staphylococcus aureus without immobilization based on Au@Ag NPs/slide substrate. Ma X; Xu S; Li L; Wang Z Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jan; 284():121757. PubMed ID: 36029743 [TBL] [Abstract][Full Text] [Related]
22. Monodisperse Au@Ag core-shell nanoprobes with ultrasensitive SERS-activity for rapid identification and Raman imaging of living cancer cells. Chang J; Zhang A; Huang Z; Chen Y; Zhang Q; Cui D Talanta; 2019 Jun; 198():45-54. PubMed ID: 30876586 [TBL] [Abstract][Full Text] [Related]
23. Catalytic hairpin activated gold-magnetic/gold-core-silver-shell rapid self-assembly for ultrasensitive Staphylococcus aureus sensing via PDMS-based SERS platform. Xu Y; He P; Ahmad W; Hassan MM; Ali S; Li H; Chen Q Biosens Bioelectron; 2022 Aug; 209():114240. PubMed ID: 35447597 [TBL] [Abstract][Full Text] [Related]
24. Size-tunable Au@Ag nanoparticles for colorimetric and SERS dual-mode sensing of palmatine in traditional Chinese medicine. Gao Y; Hu Z; Wu J; Ning Z; Jian J; Zhao T; Liang X; Yang X; Yang Z; Zhao Q; Wang J; Wang Z; Dina NE; Gherman AMR; Jiang Z; Zhou H J Pharm Biomed Anal; 2019 Sep; 174():123-133. PubMed ID: 31163346 [TBL] [Abstract][Full Text] [Related]
25. Surface-imprinted core-shell Au nanoparticles for selective detection of bisphenol A based on surface-enhanced Raman scattering. Xue JQ; Li DW; Qu LL; Long YT Anal Chim Acta; 2013 May; 777():57-62. PubMed ID: 23622965 [TBL] [Abstract][Full Text] [Related]
26. Plasmonic 3D Semiconductor-Metal Nanopore Arrays for Reliable Surface-Enhanced Raman Scattering Detection and In-Site Catalytic Reaction Monitoring. Zhang M; Chen T; Liu Y; Zhang J; Sun H; Yang J; Zhu J; Liu J; Wu Y ACS Sens; 2018 Nov; 3(11):2446-2454. PubMed ID: 30335972 [TBL] [Abstract][Full Text] [Related]
27. Ag-Nanoparticles@Bacterial Nanocellulose as a 3D Flexible and Robust Surface-Enhanced Raman Scattering Substrate. Huo D; Chen B; Meng G; Huang Z; Li M; Lei Y ACS Appl Mater Interfaces; 2020 Nov; 12(45):50713-50720. PubMed ID: 33112614 [TBL] [Abstract][Full Text] [Related]
28. Plasmonic cellulose textile fiber from waste paper for BPA sensing by SERS. Liu S; Cui R; Ma Y; Yu Q; Kannegulla A; Wu B; Fan H; Wang AX; Kong X Spectrochim Acta A Mol Biomol Spectrosc; 2020 Feb; 227():117664. PubMed ID: 31670224 [TBL] [Abstract][Full Text] [Related]
29. Gold-capped silicon for ultrasensitive SERS-biosensing: Towards human biofluids analysis. Kamińska A; Szymborski T; Jaroch T; Zmysłowski A; Szterk A Mater Sci Eng C Mater Biol Appl; 2018 Mar; 84():208-217. PubMed ID: 29519430 [TBL] [Abstract][Full Text] [Related]
30. Aptamer Recognition Induced Target-Bridged Strategy for Proteins Detection Based on Magnetic Chitosan and Silver/Chitosan Nanoparticles Using Surface-Enhanced Raman Spectroscopy. He J; Li G; Hu Y Anal Chem; 2015 Nov; 87(21):11039-47. PubMed ID: 26436541 [TBL] [Abstract][Full Text] [Related]
31. A Novel 3D Hierarchical Plasmonic Functional Cu@Co Sun G; Li N; Wang D; Xu G; Zhang X; Gong H; Li D; Li Y; Pang H; Gao M; Liang X Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947808 [TBL] [Abstract][Full Text] [Related]
32. Development of a SERS aptasensor for the determination of L-theanine using a noble metal nanoparticle-magnetic nanospheres composite. Zhang W; Zhang D; Wang P; Li X; Wang Z; Chen Q; Huang J; Yu Z; Guo F; Liang P Mikrochim Acta; 2024 Feb; 191(3):158. PubMed ID: 38409501 [TBL] [Abstract][Full Text] [Related]
33. A universal SERS aptasensor based on DTNB labeled GNTs/Ag core-shell nanotriangle and CS-Fe Yang M; Liu G; Mehedi HM; Ouyang Q; Chen Q Anal Chim Acta; 2017 Sep; 986():122-130. PubMed ID: 28870317 [TBL] [Abstract][Full Text] [Related]
34. An ultrafast electrochemical synthesis of Au@Ag core-shell nanoflowers as a SERS substrate for thiram detection in milk and juice. Wang J; Luo Z; Lin X Food Chem; 2023 Feb; 402():134433. PubMed ID: 36303364 [TBL] [Abstract][Full Text] [Related]
36. Growth of Spherical Gold Satellites on the Surface of Au@Ag@SiO Yang Y; Zhu J; Zhao J; Weng GJ; Li JJ; Zhao JW ACS Appl Mater Interfaces; 2019 Jan; 11(3):3617-3626. PubMed ID: 30608142 [TBL] [Abstract][Full Text] [Related]
37. Nanoarchitecture Based SERS for Biomolecular Fingerprinting and Label-Free Disease Markers Diagnosis. Sinha SS; Jones S; Pramanik A; Ray PC Acc Chem Res; 2016 Dec; 49(12):2725-2735. PubMed ID: 27993003 [TBL] [Abstract][Full Text] [Related]
38. Interfacial layer-by-layer self-assembly of PS nanospheres and Au@Ag nanorods for fabrication of broadband and sensitive SERS substrates. Li X; Lin X; Fang G; Dong H; Li J; Cong S; Wang L; Yang S J Colloid Interface Sci; 2022 Aug; 620():388-398. PubMed ID: 35436620 [TBL] [Abstract][Full Text] [Related]
39. Functionalized Au@Ag-Au nanoparticles as an optical and SERS dual probe for lateral flow sensing. Bai T; Wang M; Cao M; Zhang J; Zhang K; Zhou P; Liu Z; Liu Y; Guo Z; Lu X Anal Bioanal Chem; 2018 Mar; 410(9):2291-2303. PubMed ID: 29445833 [TBL] [Abstract][Full Text] [Related]
40. Three-Dimensional Dendritic Au-Ag Substrate for On-Site SERS Detection of Trace Molecules in Liquid Phase. Shao Y; Li S; Niu Y; Wang Z; Zhang K; Mei L; Hao Y Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745341 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]