These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 37639890)

  • 21. Freeze-thaw stability of water-in-oil emulsions.
    Ghosh S; Rousseau D
    J Colloid Interface Sci; 2009 Nov; 339(1):91-102. PubMed ID: 19683718
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microfluidized hemp protein isolate: an effective stabilizer for high-internal-phase emulsions with improved oxidative stability.
    Zhang ZH; Zhang GY; Huang JR; Ge AY; Zhou DY; Tang Y; Xu XB; Song L
    J Sci Food Agric; 2024 Feb; 104(3):1668-1678. PubMed ID: 37847204
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quinoa protein Pickering emulsion: A promising cryoprotectant to enhance the freeze-thaw stability of fish myofibril gels.
    Cen K; Huang C; Yu X; Gao C; Yang Y; Tang X; Feng X
    Food Chem; 2023 May; 407():135139. PubMed ID: 36512908
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of Plant-Based Adipose Tissue Analogs: Freeze-Thaw and Cooking Stability of High Internal Phase Emulsions and Gelled Emulsions.
    Hu X; McClements DJ
    Foods; 2022 Dec; 11(24):. PubMed ID: 36553739
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulation mechanism of ionic strength on the ultra-high freeze-thaw stability of myofibrillar protein microgel emulsions.
    Tang M; Sun Y; Feng X; Ma L; Dai H; Fu Y; Zhang Y
    Food Chem; 2023 Sep; 419():136044. PubMed ID: 37011570
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tannic Acid-Aminated Sugar Beet Pectin Nanoparticles as a Stabilizer of High-Internal-Phase Pickering Emulsions.
    Chen H; Wang Z; Guo X; Yu S; Zhang T; Tang X; Yang Z; Meng H
    J Agric Food Chem; 2022 Jul; 70(26):8052-8063. PubMed ID: 35732030
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of ionic strength and thermal pretreatment on the freeze-thaw stability of Pickering emulsion gels.
    Zhu Y; McClements DJ; Zhou W; Peng S; Zhou L; Zou L; Liu W
    Food Chem; 2020 Jan; 303():125401. PubMed ID: 31466031
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Suppressive effects of salts on droplet coalescence in a commercially available fat emulsion during freezing for storage.
    Komatsu H; Okada S; Handa T
    J Pharm Sci; 1997 Apr; 86(4):497-502. PubMed ID: 9109055
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of sanxan on water and ice crystal status of salt free frozen cooked noodles during freeze-thaw cycles.
    Liang Y; Cao Z; Wang J; Jie Y; Liu H; He B; Wang J
    Food Chem; 2024 Aug; 448():139137. PubMed ID: 38569406
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A new application of monosialotetrahexosylganglioside in pharmaceutics: preparation of freeze-thaw-resistant coenzyme Q10 emulsions.
    Wang Y; Wang C; Deng Y; Song Y
    Eur J Pharm Sci; 2021 Apr; 159():105701. PubMed ID: 33429046
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Freeze thaw: a simple approach for prediction of optimal cryoprotectant for freeze drying.
    Date PV; Samad A; Devarajan PV
    AAPS PharmSciTech; 2010 Mar; 11(1):304-13. PubMed ID: 20182826
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cryogelation of alginate improved the freeze-thaw stability of oil-in-water emulsions.
    Zhao Y; Chen Z; Wu T
    Carbohydr Polym; 2018 Oct; 198():26-33. PubMed ID: 30092998
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of quinoa starch nanoparticles as a stabilizer for oil in water Pickering emulsion.
    Jiang F; Zhu Y; Hu WX; Li M; Liu Y; Feng J; Lv X; Yu X; Du SK
    Food Chem; 2023 Nov; 427():136697. PubMed ID: 37379746
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Frozen storage of proteins: Use of mannitol to generate a homogenous freeze-concentrate.
    Sonje J; Chisholm CF; Suryanarayanan R
    Int J Pharm; 2023 Jan; 630():121995. PubMed ID: 35809832
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of oil phase transition on freeze/thaw-induced demulsification of water-in-oil emulsions.
    Lin C; He G; Dong C; Liu H; Xiao G; Liu Y
    Langmuir; 2008 May; 24(10):5291-8. PubMed ID: 18433153
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reversibility of freeze-thaw/re-emulsification on Pickering emulsion stabilized with gliadin/sodium caseinate nanoparticles and konjac glucomannan.
    Xu W; Ning Y; Sun Y; Sun H; Jia Y; Chai L; Luo D; Shah BR
    Int J Biol Macromol; 2023 Apr; 233():123653. PubMed ID: 36780967
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamic-mechanical thermoanalysis test: a rapid alternative for accelerated freeze-thaw stability evaluation of W/O emulsions.
    Cekic ND; Savic SM; Savic SD
    Drug Dev Ind Pharm; 2019 Dec; 45(12):1896-1906. PubMed ID: 31589077
    [No Abstract]   [Full Text] [Related]  

  • 38. Ultrastable Water-in-Oil High Internal Phase Emulsions Featuring Interfacial and Biphasic Network Stabilization.
    Lee MC; Tan C; Ravanfar R; Abbaspourrad A
    ACS Appl Mater Interfaces; 2019 Jul; 11(29):26433-26441. PubMed ID: 31245993
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ovalbumin as an Outstanding Pickering Nanostabilizer for High Internal Phase Emulsions.
    Xu YT; Tang CH; Liu TX; Liu R
    J Agric Food Chem; 2018 Aug; 66(33):8795-8804. PubMed ID: 30044922
    [TBL] [Abstract][Full Text] [Related]  

  • 40. W/O high internal phase emulsion featuring by interfacial crystallization of diacylglycerol and different internal compositions.
    Liu Y; Lee WJ; Tan CP; Lai OM; Wang Y; Qiu C
    Food Chem; 2022 Mar; 372():131305. PubMed ID: 34653777
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.