These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37639961)

  • 1. Recognition of walking directional intention employed ground reaction forces and center of pressure during gait initiation.
    Yen YL; Ye SK; Liang JN; Lee YJ
    Gait Posture; 2023 Sep; 106():23-27. PubMed ID: 37639961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamically adjustable foot-ground contact model to estimate ground reaction force during walking and running.
    Jung Y; Jung M; Ryu J; Yoon S; Park SK; Koo S
    Gait Posture; 2016 Mar; 45():62-8. PubMed ID: 26979885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A robust machine learning enabled decomposition of shear ground reaction forces during the double contact phase of walking.
    Bastien GJ; Gosseye TP; Penta M
    Gait Posture; 2019 Sep; 73():221-227. PubMed ID: 31374439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An algorithm to decompose ground reaction forces and moments from a single force platform in walking gait.
    Villeger D; Costes A; Watier B; Moretto P
    Med Eng Phys; 2014 Nov; 36(11):1530-5. PubMed ID: 25239287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of perturbation timing on recovering whole-body angular momentum during very slow walking.
    van Mierlo M; Abma M; Vlutters M; van Asseldonk EHF; van der Kooij H
    Hum Mov Sci; 2023 Oct; 91():103138. PubMed ID: 37573800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimating Ground Reaction Force and Center of Pressure Using Low-Cost Wearable Devices.
    Oubre B; Lane S; Holmes S; Boyer K; Lee SI
    IEEE Trans Biomed Eng; 2022 Apr; 69(4):1461-1468. PubMed ID: 34648428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of center of pressure alteration on the ground reaction force during gait: A statistical model.
    Shaulian H; Solomonow-Avnon D; Herman A; Rozen N; Haim A; Wolf A
    Gait Posture; 2018 Oct; 66():107-113. PubMed ID: 30172216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ankle Strategies for Step-Aside Movement during Straight Walking.
    Xie L; Cho S
    J Clin Med; 2023 Aug; 12(16):. PubMed ID: 37629258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ankle muscles drive mediolateral center of pressure control to ensure stable steady state gait.
    van Leeuwen AM; van Dieën JH; Daffertshofer A; Bruijn SM
    Sci Rep; 2021 Nov; 11(1):21481. PubMed ID: 34728667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compliant bipedal model with the center of pressure excursion associated with oscillatory behavior of the center of mass reproduces the human gait dynamics.
    Jung CK; Park S
    J Biomech; 2014 Jan; 47(1):223-9. PubMed ID: 24161797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accuracy evaluation of a method to partition ground reaction force and center of pressure in cane-assisted gait using an instrumented cane with a triaxial force sensor.
    Kamono A; Kato M; Ogihara N
    Gait Posture; 2018 Feb; 60():141-147. PubMed ID: 29207289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The impact of shod vs unshod walking on center of pressure variability.
    Barrons ZB; Heise GD
    Gait Posture; 2020 Sep; 81():116-119. PubMed ID: 32711329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discriminating features of ground reaction forces in overweight old and young adults during walking using functional principal component analysis.
    Kim HK; Dai X; Lu SH; Lu TW; Chou LS
    Gait Posture; 2022 May; 94():166-172. PubMed ID: 35339964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of unmeasured ground reaction force data based on the oscillatory characteristics of the center of mass during human walking.
    Ryu HX; Park S
    J Biomech; 2018 Apr; 71():135-143. PubMed ID: 29525240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A model to predict ground reaction force for elastically-suspended backpacks.
    Leng Y; Lin X; Lu Z; Song A; Yu Z; Fu C
    Gait Posture; 2020 Oct; 82():118-125. PubMed ID: 32947177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ground reaction force estimation using an insole-type pressure mat and joint kinematics during walking.
    Jung Y; Jung M; Lee K; Koo S
    J Biomech; 2014 Aug; 47(11):2693-9. PubMed ID: 24917473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional GRF and CoP Estimation during Stair and Slope Ascent/Descent with Wearable IMUs and Foot Pressure Sensors.
    Fukushi K; Sekiguchi Y; Honda K; Yaguchi H; Izumi SI
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6401-6404. PubMed ID: 31947307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Center of pressure trajectory during gait: a comparison of four foot positions.
    Lugade V; Kaufman K
    Gait Posture; 2014 Sep; 40(4):719-22. PubMed ID: 25052586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Are there associations with age and sex in walking stability in healthy older adults?
    van Kooten D; Hettinga F; Duffy K; Jackson J; Taylor MJD
    Gait Posture; 2018 Feb; 60():65-70. PubMed ID: 29161624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Footwear and Foam Surface Alter Gait Initiation of Typical Subjects.
    Vieira MF; Sacco Ide C; Nora FG; Rosenbaum D; Lobo da Costa PH
    PLoS One; 2015; 10(8):e0135821. PubMed ID: 26270323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.