These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 37640435)

  • 1. The effect of mobile phone ringtone on visual recognition during driving: Evidence from laboratory and real-scene eye movement experiments.
    Wang Y; Liu P; Liu Z; Ding J; Zhou W
    Traffic Inj Prev; 2023; 24(8):678-685. PubMed ID: 37640435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of road infrastructure and traffic complexity in speed adaptation behaviour of distracted drivers.
    Oviedo-Trespalacios O; Haque MM; King M; Washington S
    Accid Anal Prev; 2017 Apr; 101():67-77. PubMed ID: 28189943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Driver distraction and in-vehicle interventions: A driving simulator study on visual attention and driving performance.
    Ezzati Amini R; Al Haddad C; Batabyal D; Gkena I; De Vos B; Cuenen A; Brijs T; Antoniou C
    Accid Anal Prev; 2023 Oct; 191():107195. PubMed ID: 37441985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling braking behaviour of distracted young drivers in car-following interactions: A grouped random parameters duration model with heterogeneity-in-means.
    Ali Y; Haque MM
    Accid Anal Prev; 2023 Jun; 185():107015. PubMed ID: 36889237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Examining drivers' eye glance patterns during distracted driving: Insights from scanning randomness and glance transition matrix.
    Wang Y; Bao S; Du W; Ye Z; Sayer JR
    J Safety Res; 2017 Dec; 63():149-155. PubMed ID: 29203013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Driving behaviour while self-regulating mobile phone interactions: A human-machine system approach.
    Oviedo-Trespalacios O; Haque MM; King M; Demmel S
    Accid Anal Prev; 2018 Sep; 118():253-262. PubMed ID: 29653674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drivers' self-regulatory behaviors in active and responsive scenarios.
    Zhang Y; Zhou R; Shi Y
    Traffic Inj Prev; 2023; 24(3):262-270. PubMed ID: 36853398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characteristics of driver cell phone use and their influence on driving performance: A naturalistic driving study.
    Wang X; Xu R; Asmelash A; Xing Y; Lee C
    Accid Anal Prev; 2020 Dec; 148():105845. PubMed ID: 33120181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A parametric duration model of the reaction times of drivers distracted by mobile phone conversations.
    Haque MM; Washington S
    Accid Anal Prev; 2014 Jan; 62():42-53. PubMed ID: 24129320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. "Mate! I'm running 10 min late": An investigation into the self-regulation of mobile phone tasks while driving.
    Oviedo-Trespalacios O; Haque MM; King M; Washington S
    Accid Anal Prev; 2019 Jan; 122():134-142. PubMed ID: 30343165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of mobile phone use engagement during naturalistic driving through explainable imbalanced machine learning.
    Ziakopoulos A; Kontaxi A; Yannis G
    Accid Anal Prev; 2023 Mar; 181():106936. PubMed ID: 36577243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating the impact of environmental and temporal features on mobile phone distracted driving behavior using phone use data.
    Peng Y; Song G; Guo M; Wu L; Yu L
    Accid Anal Prev; 2023 Feb; 180():106925. PubMed ID: 36512902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-regulation of driving speed among distracted drivers: An application of driver behavioral adaptation theory.
    Oviedo-Trespalacios O; Haque MM; King M; Washington S
    Traffic Inj Prev; 2017 Aug; 18(6):599-605. PubMed ID: 28095026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visual and cognitive demands of manual and voice-based driving mode implementations on smartphones.
    Monk C; Sall R; Lester BD; Stephen Higgins J
    Accid Anal Prev; 2023 Jul; 187():107033. PubMed ID: 37099998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Smartwatches are more distracting than mobile phones while driving: Results from an experimental study.
    Brodeur M; Ruer P; Léger PM; Sénécal S
    Accid Anal Prev; 2021 Jan; 149():105846. PubMed ID: 33181456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mere presence of a mobile phone: Does it influence driving performance?
    Chee P; Irwin J; Bennett JM; Carrigan AJ
    Accid Anal Prev; 2021 Sep; 159():106226. PubMed ID: 34198051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Mobile Phone Use on Driving Performance: An Experimental Study of Workload and Traffic Violations.
    Ortega CAC; Mariscal MA; Boulagouas W; Herrera S; Espinosa JM; García-Herrero S
    Int J Environ Res Public Health; 2021 Jul; 18(13):. PubMed ID: 34281034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. "It is frustrating to not have control even though I know it's not legal!": A mixed-methods investigation on applications to prevent mobile phone use while driving.
    Oviedo-Trespalacios O; Truelove V; King M
    Accid Anal Prev; 2020 Mar; 137():105412. PubMed ID: 32006729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Examination of drivers' cell phone use behavior at intersections by using naturalistic driving data.
    Xiong H; Bao S; Sayer J; Kato K
    J Safety Res; 2015 Sep; 54():89-93. PubMed ID: 26403907
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drivers' gap acceptance behaviours at intersections: A driving simulator study to understand the impact of mobile phone visual-manual interactions.
    Li X; Oviedo-Trespalacios O; Rakotonirainy A
    Accid Anal Prev; 2020 Apr; 138():105486. PubMed ID: 32109686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.