These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 37640476)

  • 1. Mineralization of a Fully Halogenated Organic Compound by Persulfate under Conditions Relevant to in Situ Reduction and Oxidation: Reduction of Hexachloroethane by Ethanol Addition Followed by Oxidation.
    Kim TK; Sedlak DL
    Environ Sci Technol; 2023 Sep; 57(36):13691-13698. PubMed ID: 37640476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reductive Hexachloroethane Degradation by S
    Zhu C; Zhu F; Liu C; Chen N; Zhou D; Fang G; Gao J
    Environ Sci Technol; 2018 Aug; 52(15):8548-8557. PubMed ID: 29989406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of halide impacts on the efficiency of contaminant degradation by sulfate and hydroxyl radical-based advanced oxidation processes (AOPs).
    Yang Y; Pignatello JJ; Ma J; Mitch WA
    Environ Sci Technol; 2014 Feb; 48(4):2344-51. PubMed ID: 24479380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing acute toxicity potential of persulfate ISCO treated water.
    Liang C; Wang CW
    Chemosphere; 2013 Nov; 93(11):2711-6. PubMed ID: 24099898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Persulfate activation during exertion of total oxidant demand.
    Teel AL; Elloy FC; Watts RJ
    Chemosphere; 2016 Sep; 158():184-92. PubMed ID: 27269993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of matrix components on UV/H2O2 and UV/S2O8(2-) advanced oxidation processes for trace organic degradation in reverse osmosis brines from municipal wastewater reuse facilities.
    Yang Y; Pignatello JJ; Ma J; Mitch WA
    Water Res; 2016 Feb; 89():192-200. PubMed ID: 26657355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peroxide stabilizers remarkably increase the longevity of thermally activated peroxydisulfate for enhanced ISCO remediation.
    Hong J; Wang L; Lu X; Deng D
    Water Res; 2022 Oct; 224():119046. PubMed ID: 36096026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation of Benzene by Persulfate in the Presence of Fe(III)- and Mn(IV)-Containing Oxides: Stoichiometric Efficiency and Transformation Products.
    Liu H; Bruton TA; Li W; Buren JV; Prasse C; Doyle FM; Sedlak DL
    Environ Sci Technol; 2016 Jan; 50(2):890-8. PubMed ID: 26687229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of Interaction between Persulfate and Soil Constituents: Activation, Free Radical Formation, Conversion, and Identification.
    Fang G; Chen X; Wu W; Liu C; Dionysiou DD; Fan T; Wang Y; Zhu C; Zhou D
    Environ Sci Technol; 2018 Dec; 52(24):14352-14361. PubMed ID: 30424600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unraveling the catalyzing behaviors of different iron species (Fe
    Zhen G; Lu X; Su L; Kobayashi T; Kumar G; Zhou T; Xu K; Li YY; Zhu X; Zhao Y
    Water Res; 2018 May; 134():101-114. PubMed ID: 29407644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ chemical oxidation of contaminated groundwater by persulfate: decomposition by Fe(III)- and Mn(IV)-containing oxides and aquifer materials.
    Liu H; Bruton TA; Doyle FM; Sedlak DL
    Environ Sci Technol; 2014 Sep; 48(17):10330-6. PubMed ID: 25133603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Persulfate oxidation for in situ remediation of TCE. II. Activated by chelated ferrous ion.
    Liang C; Bruell CJ; Marley MC; Sperry KL
    Chemosphere; 2004 Jun; 55(9):1225-33. PubMed ID: 15081763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Persulfate activation by glucose for in situ chemical oxidation.
    Watts RJ; Ahmad M; Hohner AK; Teel AL
    Water Res; 2018 Apr; 133():247-254. PubMed ID: 29407705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid DDTs degradation by thermally activated persulfate in soil under aerobic and anaerobic conditions: Reductive radicals vs. oxidative radicals.
    Zhu C; Wang D; Zhu F; Liu S; Fang G; Gao J; Zhou D
    J Hazard Mater; 2021 Jan; 402():123557. PubMed ID: 33254742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Persulfate persistence under thermal activation conditions.
    Johnson RL; Tratnyek PG; Johnson RO
    Environ Sci Technol; 2008 Dec; 42(24):9350-6. PubMed ID: 19174915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation of trichloroethene by siderite-catalyzed hydrogen peroxide and persulfate: Investigation of reaction mechanisms and degradation products.
    Yan N; Liu F; Xue Q; Brusseau ML; Liu Y; Wang J
    Chem Eng J; 2015 Aug; 274():61-68. PubMed ID: 26236152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental upscaling analyses for a surfactant-enhanced in-situ chemical oxidation (S-ISCO) remediation design.
    Herzog BM; Kleinknecht SM; Haslauer CP; Klaas N
    J Contam Hydrol; 2023 Sep; 258():104230. PubMed ID: 37481897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of base activation of persulfate.
    Furman OS; Teel AL; Watts RJ
    Environ Sci Technol; 2010 Aug; 44(16):6423-8. PubMed ID: 20704244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From Theory to Practice: Leveraging Chemical Principles To Improve the Performance of Peroxydisulfate-Based In Situ Chemical Oxidation of Organic Contaminants.
    McGachy L; Sedlak DL
    Environ Sci Technol; 2024 Jan; 58(1):17-32. PubMed ID: 38110187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic reductive dehalogenation of hexachloroethane by molecular variants of cytochrome P450cam (CYP101).
    Walsh ME; Kyritsis P; Eady NA; Hill HA; Wong LL
    Eur J Biochem; 2000 Sep; 267(18):5815-20. PubMed ID: 10971594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.