These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 37640541)

  • 1. The Role of Genetically Distinct Central Amygdala Neurons in Appetitive and Aversive Responding Assayed with a Novel Dual Valence Operant Conditioning Paradigm.
    Dorofeikova M; Stelly CE; Duong A; Basavanhalli S; Bean E; Weissmuller K; Sifnugel N; Resendez A; Corey DM; Tasker JG; Fadok JP
    eNeuro; 2023 Sep; 10(9):. PubMed ID: 37640541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of genetically distinct central amygdala neurons in appetitive and aversive responding assayed with a novel dual valence operant conditioning paradigm.
    Dorofeikova M; Stelly CE; Duong A; Basavanhalli S; Bean E; Weissmuller K; Sifnugel N; Resendez A; Corey DM; Tasker JG; Fadok JP
    bioRxiv; 2023 Jul; ():. PubMed ID: 37461627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activating Corticotropin-Releasing Factor Systems in the Nucleus Accumbens, Amygdala, and Bed Nucleus of Stria Terminalis: Incentive Motivation or Aversive Motivation?
    Baumgartner HM; Schulkin J; Berridge KC
    Biol Psychiatry; 2021 Jun; 89(12):1162-1175. PubMed ID: 33726937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Central amygdala circuits in valence and salience processing.
    Kong MS; Zweifel LS
    Behav Brain Res; 2021 Jul; 410():113355. PubMed ID: 33989728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amygdala-Midbrain Connections Modulate Appetitive and Aversive Learning.
    Steinberg EE; Gore F; Heifets BD; Taylor MD; Norville ZC; Beier KT; Földy C; Lerner TN; Luo L; Deisseroth K; Malenka RC
    Neuron; 2020 Jun; 106(6):1026-1043.e9. PubMed ID: 32294466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Encoding of Environmental Cues in Central Amygdala Neurons during Foraging.
    Ponserre M; Fermani F; Gaitanos L; Klein R
    J Neurosci; 2022 May; 42(18):3783-3796. PubMed ID: 35332079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plastic and stimulus-specific coding of salient events in the central amygdala.
    Yang T; Yu K; Zhang X; Xiao X; Chen X; Fu Y; Li B
    Nature; 2023 Apr; 616(7957):510-519. PubMed ID: 37020025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Corticotropin releasing factor (CRF) systems: Promoting cocaine pursuit without distress via incentive motivation.
    Baumgartner HM; Granillo M; Schulkin J; Berridge KC
    PLoS One; 2022; 17(5):e0267345. PubMed ID: 35503756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Central amygdala circuits modulate food consumption through a positive-valence mechanism.
    Douglass AM; Kucukdereli H; Ponserre M; Markovic M; Gründemann J; Strobel C; Alcala Morales PL; Conzelmann KK; Lüthi A; Klein R
    Nat Neurosci; 2017 Oct; 20(10):1384-1394. PubMed ID: 28825719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prelimbic and Infralimbic Prefrontal Regulation of Active and Inhibitory Avoidance and Reward-Seeking.
    Capuzzo G; Floresco SB
    J Neurosci; 2020 Jun; 40(24):4773-4787. PubMed ID: 32393535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The convergence of information about rewarding and aversive stimuli in single neurons.
    Morrison SE; Salzman CD
    J Neurosci; 2009 Sep; 29(37):11471-83. PubMed ID: 19759296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reward learning requires activity of matrix metalloproteinase-9 in the central amygdala.
    Knapska E; Lioudyno V; Kiryk A; Mikosz M; Górkiewicz T; Michaluk P; Gawlak M; Chaturvedi M; Mochol G; Balcerzyk M; Wojcik DK; Wilczynski GM; Kaczmarek L
    J Neurosci; 2013 Sep; 33(36):14591-600. PubMed ID: 24005309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of nucleus accumbens dopamine in motivated behavior: a unifying interpretation with special reference to reward-seeking.
    Ikemoto S; Panksepp J
    Brain Res Brain Res Rev; 1999 Dec; 31(1):6-41. PubMed ID: 10611493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Basolateral to Central Amygdala Neural Circuits for Appetitive Behaviors.
    Kim J; Zhang X; Muralidhar S; LeBlanc SA; Tonegawa S
    Neuron; 2017 Mar; 93(6):1464-1479.e5. PubMed ID: 28334609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Insula-Central Amygdala Circuit for Guiding Tastant-Reinforced Choice Behavior.
    Schiff HC; Bouhuis AL; Yu K; Penzo MA; Li H; He M; Li B
    J Neurosci; 2018 Feb; 38(6):1418-1429. PubMed ID: 29305535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of central amygdala chemogenetic manipulation and prior chronic alcohol exposure on Pavlovian-to-instrumental transfer.
    Shields CN; Gremel CM
    Alcohol Clin Exp Res; 2022 Nov; 46(11):1967-1979. PubMed ID: 36117381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemogenetic Inhibition Reveals That Processing Relative But Not Absolute Threat Requires Basal Amygdala.
    Campese VD; Kim IT; Hou M; Gupta S; Draus C; Kurpas B; Burke K; LeDoux JE
    J Neurosci; 2019 Oct; 39(43):8510-8516. PubMed ID: 31492771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of basal ganglia and orbitofrontal cortex in goal-directed behavior.
    Hollerman JR; Tremblay L; Schultz W
    Prog Brain Res; 2000; 126():193-215. PubMed ID: 11105648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Threat and Reward Imminence Processing in the Human Brain.
    Murty DVPS; Song S; Surampudi SG; Pessoa L
    J Neurosci; 2023 Apr; 43(16):2973-2987. PubMed ID: 36927571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep brain stimulation in the central nucleus of the amygdala decreases 'wanting' and 'liking' of food rewards.
    Ross SE; Lehmann Levin E; Itoga CA; Schoen CB; Selmane R; Aldridge JW
    Eur J Neurosci; 2016 Oct; 44(7):2431-2445. PubMed ID: 27422085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.